精英家教网 > 高中数学 > 题目详情
7.若sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),则 cos(α+$\frac{5π}{4}$)=$-\frac{7\sqrt{2}}{10}$.

分析 由已知中sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),求出cosα值,代入两角和的余弦公式,可得答案.

解答 解:∵sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),
∴cosα=$\sqrt{1-{sin}^{2}α}$=$\frac{4}{5}$,
∴cos(α+$\frac{5π}{4}$)=cosαcos$\frac{5π}{4}$-sinαsin$\frac{5π}{4}$=$-\frac{7\sqrt{2}}{10}$,
故答案为:$-\frac{7\sqrt{2}}{10}$.

点评 本题考查的知识点是两角和与差的余弦公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图1,在边长为12的正方形AA′A${\;}_{1}^{′}$A1中,BB1∥CC1∥AA1,且AB=3,且BC=4,AA${\;}_{1}^{′}$分别交BB1,CC1于点P,Q,将该正方形沿BB1,CC1折叠,使得A′A${\;}_{1}^{′}$与AA1重合,构成图2所示的三棱柱ABC-A1B1C1,在图2中:
(1)求证:AB⊥PQ;
(2)在底边AC上有一点M,使得BM∥平面APQ,求点M到平面PAQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)满足对于任意的x>0恒有f(3x)=3f(x)成立,当1≤x≤3时,f(x)=1-|x-2|,则集合{x|f(x)=f(33)}中最小的元素为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是(  )
A.870B.30C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足an=n•kn(n∈N*,0<k<1)给出下列命题:
①当k=$\frac{1}{2}$时,数列{an}为递减数列
②当$\frac{1}{2}$<k<1时,数列{an}不一定有最大项
③当0<k<$\frac{1}{2}$时,数列{an}为递减数列
④当$\frac{k}{1-k}$为正整数时,数列{an}必有两项相等的最大项
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为(  )
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)从这所学校报考飞行员的同学中任选一人,求这个人体重超过60公斤的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x、y均为实数,记max{x,y}=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,min{x,y}=$\left\{\begin{array}{l}{y,x≥y}\\{x,x<y}\end{array}\right.$.若i表示虚数单位,且a=x1+y1i,b=x2+y2i,x1,y1,x2,y2∈R,则(  )
A.min{|a+b|,|a-b|}≤min{|a|,|b|}B.max{|a+b|,|a-b|}≤max{|a|,|b|}
C.min{|a+b|2,|a-b|2}≥|a|2+|b|2D.max{|a+b|2,|a-b|2}≥{|a|2+|b|2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某几何体三视图如图,根据图中标出的尺寸(单位:cm)可得该几何体的体积是6cm3(V柱体=Sh)

查看答案和解析>>

同步练习册答案