精英家教网 > 高中数学 > 题目详情
15.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是(  )
A.870B.30C.6D.3

分析 根据已知的框图,可知程序的功能是利用循环计算数列an的各项值,并输出,模拟程序的运行结果,可得答案.

解答 解:当N=1时,A=3,故数列的第1项为3,N=2,满足继续循环的条件,A=3×2=6;
当N=2时,A=6,故数列的第2项为6,N=3,满足继续循环的条件,A=6×5=30;
当N=3时,A=30,故数列的第3项为30,
故选:B.

点评 本题考查的知识点是程序框图,当程序的运行次数不多时,我们多采用模拟程序运行的方法得到程序的运行结果,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q.若∠PAQ=60°且$\overrightarrow{OQ}$=4$\overrightarrow{OP}$,则双曲线C的离心率为(  )
A.$\sqrt{3}$B.$\frac{2\sqrt{13}}{5}$C.$\frac{\sqrt{7}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.合肥八中模拟联合国协会共有三个小组:中文组,英文组,辩论组,现有12名新同学(其中3名为男同学)被平均分配到三个小组.
(Ⅰ)求男同学甲被分到中文组,其他2名男同学被分到另外两个不同小组的概率;
(Ⅱ)若男同学所在的小组个数为X,求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|2${\;}^{{x}^{2}-4x-5}$>1},集合B={x|y=lg$\frac{2-x}{2+x}$},则A∩B=(  )
A.{x|-5<x<1}B.{x|-2<x<1}C.{x|-2<x<-1}D.{x|-5<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与C的交点为Q,且|QF|=$\frac{5}{4}$|PQ|.
(Ⅰ)求C的方程;
(Ⅱ)点A(-a,a)(a>0)在抛物线C上,是否存在直线l:y=kx+4与C交于点M,N,使得△MAN是以MN为斜边的直角三角形?若存在,求出直线l的方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x)满足:(1)f(x)+f(2-x)=0,(2)f(x-2)=f(-x),(3)在[-1,1]上表达式为f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ cos(\frac{π}{2}x),x∈(0,1]\end{array}$,则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的图象区间[-3,3]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),则 cos(α+$\frac{5π}{4}$)=$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若一个几何体的三视图如图所示,则此几何体的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1,点E在棱PC上,且DE⊥PB.
(Ⅰ) 求CE的长;
(Ⅱ) 求二面角A-PB-C的正弦值.

查看答案和解析>>

同步练习册答案