精英家教网 > 高中数学 > 题目详情
12.已知复数z满足:zi=1+i(i是虚数单位),则z的虚部为(  )
A.-iB.iC.1D.-1

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:由zi=1+i,得$z=\frac{1+i}{i}=\frac{(1+i)(-i)}{-{i}^{2}}=1-i$,
∴z的虚部为-1.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列四个命题中正确命题的是(  )
A.学校抽取每个班级座号为21-30号的同学检查作业完成情况,这是分层抽样
B.可以通过频率分布直方图中最高小矩形的高来估计这组数据的众数
C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=1-p
D.在散点图中,回归直线至少经过一个点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|2${\;}^{{x}^{2}-4x-5}$>1},集合B={x|y=lg$\frac{2-x}{2+x}$},则A∩B=(  )
A.{x|-5<x<1}B.{x|-2<x<1}C.{x|-2<x<-1}D.{x|-5<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x)满足:(1)f(x)+f(2-x)=0,(2)f(x-2)=f(-x),(3)在[-1,1]上表达式为f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[-1,0]\\ cos(\frac{π}{2}x),x∈(0,1]\end{array}$,则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的图象区间[-3,3]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinα=-$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),则 cos(α+$\frac{5π}{4}$)=$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在一次百米比赛中,甲,乙等6名同学采用随机抽签的方式决定各自的跑道,跑道编号为1至6,每人一条跑道
(Ⅰ)求甲在1或2跑道且乙不在5或6跑道的概率;
(Ⅱ)求甲乙之间恰好间隔两人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若一个几何体的三视图如图所示,则此几何体的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-5≤0}\\{x+y-4≥0}\end{array}\right.$.
(1)求x2+y2的最大值和最小值;
(2)求z=$\frac{y-1}{x+1}$的取值范围;
(3)求z=|x+2y-4|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数$f(x)=\sqrt{|x+1|+|x+2|-a}$.
(1)a=5,函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a,b∈(B∩CRA)时,证明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}|$.

查看答案和解析>>

同步练习册答案