精英家教网 > 高中数学 > 题目详情
1.在△ABC中,AB=2,BC=$\sqrt{10}$,cosA=$\frac{1}{4}$,则AB边上的高等于(  )
A.$\frac{3\sqrt{15}}{4}$B.$\frac{3}{4}$C.$\frac{3\sqrt{15}}{2}$D.3

分析 利用余弦定理求得丨AC丨,sinA=$\sqrt{1-cosA}$,则sinA=$\frac{丨CD丨}{丨AC丨}$,即可求得AB边上的高.

解答 解:在△ABC中,由余弦定理可知:丨BC丨2=丨AB丨2+丨AC丨2-2丨AB丨丨AC丨cosA,
整理得:丨AC丨2-丨AC丨-6=0,解得:丨AC丨=3,
sinA=$\sqrt{1-cosA}$=$\frac{\sqrt{15}}{4}$,
AB边上的高CD,
sinA=$\frac{丨CD丨}{丨AC丨}$,则丨CD丨=丨AC丨sinA=$\frac{3\sqrt{15}}{4}$
故选A.

点评 本题考查余弦定理的应用,同角三角函数的基本关系,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足${b_1}=\frac{1}{2}$,${b_2}=\frac{1}{4}$,对任意n∈N*,都有$b_{n+1}^2=b{\;}_n{b_{n+2}}$.
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn.若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(1)求函数f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设θ是第四象限角,则点P(sin(sinθ),cos(sinθ))在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设?x?表示不小于实数x的最小整数,如?2.6?=3,?-3.5?=-3.已知函数f(x)=?x?2-2?x?,若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥E-ABCD中,ABCD是边长为2的正方形,且AE⊥平面CDE,且∠DAE=30°
(1)求证:平面ABE⊥平面ADE
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}与{bn}满足${a_{n+1}}+2{b_n}=2{b_{n+1}}+{a_n}({n∈{N^*}})$,若${a_1}=9,{b_n}={3^n}$(n∈N*)且$λ{a_n}>{3^n}+36({n-3})+3λ$对一切n∈N*恒成立,则实数λ的取值范围是($\frac{13}{18}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=sinx+cosx的最大值是$\sqrt{2}$.

查看答案和解析>>

同步练习册答案