精英家教网 > 高中数学 > 题目详情
16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 求得直线l方程,与双曲线的渐近线方程联立求得B,C,根据向量的坐标运算,即可求得b和a的关系,利用双曲线的离心率公式即可求得双曲线的离心率.

解答 解:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)焦点在x轴上,右顶点A(a,0),则直线l:y=-x+a,
$\left\{\begin{array}{l}{y=-x+a}\\{bx-ay=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{{a}^{2}}{a+b}}\\{y=\frac{ab}{a+b}}\end{array}\right.$,则B($\frac{{a}^{2}}{a+b}$,$\frac{ab}{a+b}$),
$\left\{\begin{array}{l}{y=-x+a}\\{bx+ay=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{{a}^{2}}{a-b}}\\{y=-\frac{ab}{a-b}}\end{array}\right.$,则C($\frac{{a}^{2}}{a-b}$,-$\frac{ab}{a-b}$),
∴$\overrightarrow{AB}$=(-$\frac{ab}{a+b}$,$\frac{ab}{a+b}$),$\overrightarrow{BC}$=($\frac{2{a}^{2}b}{{a}^{2}-{b}^{2}}$,-$\frac{2{a}^{2}b}{{a}^{2}-{b}^{2}}$),
∵$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{BC}$,
∴-$\frac{ab}{a+b}$=$\frac{2{a}^{2}b}{{a}^{2}-{b}^{2}}$,b=2a,
∴c2=a2+b2=5a2
∴e=$\frac{c}{a}$=$\sqrt{5}$,
故选D.

点评 本题考查双曲线的渐近线方程及离心率公式,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}前n项和${S_n}=\frac{1}{2}{n^2}+\frac{3}{2}n-4$
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$,则sin($\frac{π}{6}$-2α)=(  )
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$±\frac{7}{9}$D.$-\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an},Sn是其前n项和,且满足2an=Sn+n(n∈N*).
(1)求证:数列{an+1}是等比数列;
(2)设bn=log2(an+1),且Mn为数列{bn}的前n项和,求数列$\left\{{\frac{1}{M_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为AC的中点,AB=1.
(1)求证:B1O⊥平面ACM;
(2)求三棱锥O-AB1M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,AB=2,BC=$\sqrt{10}$,cosA=$\frac{1}{4}$,则AB边上的高等于(  )
A.$\frac{3\sqrt{15}}{4}$B.$\frac{3}{4}$C.$\frac{3\sqrt{15}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(4,4),$\overrightarrow b=(3,4)$
(1)求$|{3\vec a-2\vec b}|$的值
(2)若$(k\overrightarrow a+\overrightarrow b)$与($\overrightarrow{a}$-$\overrightarrow{b}$)垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,$BD=2\sqrt{3}$,AB=2CD=4.
(1)设M是PC上一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数).
(1)将曲线C的极坐标方程和直线l的参数方程转化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,试求实数m的值.

查看答案和解析>>

同步练习册答案