精英家教网 > 高中数学 > 题目详情
7.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$,则sin($\frac{π}{6}$-2α)=(  )
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$±\frac{7}{9}$D.$-\frac{2}{9}$

分析 由已知利用诱导公式,二倍角的余弦函数公式即可计算得解.

解答 解:∵sin($\frac{π}{3}$-α)=cos[$\frac{π}{2}$-($\frac{π}{3}$-α)]=cos($\frac{π}{6}$+α)=$\frac{1}{3}$,
∴sin($\frac{π}{6}$-2α)=cos[$\frac{π}{2}$-($\frac{π}{6}$-2α)]=cos[2($\frac{π}{6}$+α)]=2cos2($\frac{π}{6}$+α)-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$.
故选:A.

点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1(-1,0),F2(1,0),上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1为QF2的中点.
(1)求椭圆C的标准方程;
(2)过F2的直线l与C交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知自然数x满足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,则x(  )
A.3B.5C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,将三角形ABD沿BD折起,使点A在平面BCD上的投影G落在BD上.
(1)求证:平面ACD⊥平面ABD;
(2)求二面角G-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.禽流感是家禽养殖业的最大威胁.为检验某新药物预防禽流感的效果,取80只家禽进行试验,得到如下丢失数据的列联表:(c,d,M,N表示丢失的数据)
患病未患病总计
未服用药ab40
服用药5dM
总计25N80
(1)求出a,b,d,M,N的值,并判断:能否有99.5%的把握认为药物有效;
(2)若表中服用药后患病的5只家禽分别为3只鸡和2只鸭,现从这5只家禽中随机选取2只,求这2只家禽是同一类的概率.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(1)求函数f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知(3-4i)$\overline{z}$=i101(其中$\overline z$为z的共轭复数,i为虚数单位),则复数z的虚部为(  )
A.$\frac{3i}{25}$B.-$\frac{3}{25}$C.$\frac{3}{25}$D.-$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C,若$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin(-2x+θ)(0<θ<π),$f({\frac{π}{4}})=-1$,则f(x)的一个单调递减区间是(  )
A.$({-\frac{5π}{12},\frac{π}{12}})$B.$({\frac{π}{12},\frac{7π}{12}})$C.$({-\frac{π}{6},\frac{π}{3}})$D.$({-\frac{π}{12},\frac{5π}{12}})$

查看答案和解析>>

同步练习册答案