精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足${b_1}=\frac{1}{2}$,${b_2}=\frac{1}{4}$,对任意n∈N*,都有$b_{n+1}^2=b{\;}_n{b_{n+2}}$.
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn.若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

分析 (1)由(n+1)an=2Sn,可得${S_n}=\frac{{({n+1}){a_n}}}{2}$,n∈N*,利用递推关系可得:$\frac{a_n}{{{a_{n-1}}}}=\frac{n}{n-1}$( n≥2).利用“累乘求积”方法即可得出an.利用等比数列的通项公式即可得出bn
(2)由anbn=n$•(\frac{1}{2})^{n}$,利用“错位相减法”与等比数列的求和公式即可得出Tn.代入不等式λnTn+2bnSn<2(λn+3bn),化简整理利用二次函数的单调性即可得出.

解答 解:(1)∵(n+1)an=2Sn,∴${S_n}=\frac{{({n+1}){a_n}}}{2}$,n∈N*
当n≥2时,${a_n}={S_n}-{S_{n-1}}=\frac{{({n+1}){a_n}}}{2}-\frac{{n{a_{n-1}}}}{2}$,
∴nan-1=(n-1)an,即$\frac{a_n}{{{a_{n-1}}}}=\frac{n}{n-1}$( n≥2).
∴${a_n}=\frac{a_n}{{{a_{n-1}}}}•\frac{{{a_{n-1}}}}{{{a_{n-2}}}}…\frac{a_3}{a_2}•\frac{a_2}{a_1}•{a_1}=\frac{n}{n-1}•\frac{n-1}{n-2}•\frac{n-2}{n-3}…\frac{3}{2}•\frac{2}{1}•1=n$(n≥2),
又a1=1,也满足上式,
故数列{an}的通项公式an=n(n∈N*)..
由$b_{n+1}^2={b_n}•{b_{n+2}},且{b_1}≠0$,${b_1}=\frac{1}{2}$,${b_2}=\frac{1}{4}$,
可知:数列{bn}是等比数列,其首项、公比均为$\frac{1}{2}$,
∴数列{bn}的通项公式:bn=$(\frac{1}{2})^{n}$.
(2)∵anbn=n$•(\frac{1}{2})^{n}$.
∴Tn=$\frac{1}{2}+2×(\frac{1}{2})^{2}$+3×$(\frac{1}{2})^{3}$+…+n$•(\frac{1}{2})^{n}$.
$\frac{1}{2}{T}_{n}$=$(\frac{1}{2})^{2}+2×(\frac{1}{2})^{3}$+…+(n-1)$•(\frac{1}{2})^{n}$+n$•(\frac{1}{2})^{n+1}$,
∴$\frac{1}{2}$Tn=$\frac{1}{2}+(\frac{1}{2})^{2}$+…+$(\frac{1}{2})^{n}$-n$•(\frac{1}{2})^{n+1}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n$•(\frac{1}{2})^{n+1}$,
∴${T_n}=2-\frac{n+2}{2^n}$.
又Sn=1+2+…+n=$\frac{n(n+1)}{2}$.
不等式λnTn+2bnSn<2(λn+3bn)恒成立,
即λn$(2-\frac{n+2}{{2}^{n}})$+$\frac{n(n+1)}{{2}^{n}}$<2$(λn+\frac{3}{{2}^{n}})$,
即(1-λ)n2+(1-2λ)n-6<0,(n∈N*)恒成立.
设f(n)=(1-λ)n2+(1-2λ)n-6,(n∈N*).
当λ=1时,f(n)=-n-6<0恒成立,则λ=1满足条件;
当λ<1时,由二次函数性质知不恒成立;
当λ>1时,由于对称轴x=$\frac{1-2λ}{1-λ}$<0,则f(n)在[1,+∞)上单调递减,
∴f(n)≤f(1)=-3λ-4<0恒成立,则λ>1满足条件,
综上所述,实数λ的取值范围是[1,+∞).

点评 本题考查了数列递推关系、“累乘求积”方法、等比数列的通项公式与求和公式、“错位相减法”、二次函数的单调性、分类讨论方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知tanα=-$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,β∈(0,$\frac{π}{2}$),则tan(α+β)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.公元前三世纪,被誉为“几何之父”著名数学家欧几里得在《几何原本》中提出“余弦定理”,古往今来有许许多多的证明方法,请在△ABC中,请写出余弦定理的其中一个公式,并且利用向量知识加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=4,AC=2$\sqrt{7}$,DC=2
(1)求cos∠ADC
(2)求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}前n项和${S_n}=\frac{1}{2}{n^2}+\frac{3}{2}n-4$
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,D、E分别是AB,AC的中点,M是直线DE上的动点,若△ABC的面积为1,则$\overrightarrow{MB}$•$\overrightarrow{MC}$+$\overrightarrow{BC}$2的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的内角A,B,C的对边分别是a,b,c,若A=$\frac{π}{3}$,则$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{bc}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆M:(x-2)2+y2=4,则过点(1,1)的直线中被圆M截得的最短弦长为2$\sqrt{2}$.类比上述方法:设球O是棱长为3的正方体ABCD-A1B1C1D1的外接球,过AC1的一个三等分点作球O的截面,则最小截面的面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,AB=2,BC=$\sqrt{10}$,cosA=$\frac{1}{4}$,则AB边上的高等于(  )
A.$\frac{3\sqrt{15}}{4}$B.$\frac{3}{4}$C.$\frac{3\sqrt{15}}{2}$D.3

查看答案和解析>>

同步练习册答案