精英家教网 > 高中数学 > 题目详情
1.已知tanα=-$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,β∈(0,$\frac{π}{2}$),则tan(α+β)=1.

分析 由已知利用同角三角函数基本关系式可求tanβ,进而利用两角和的正切函数公式即可计算得解.

解答 解:∵tanα=-$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,β∈(0,$\frac{π}{2}$),
∴tanβ=$\frac{sinβ}{cosβ}$=$\frac{\sqrt{1-co{s}^{2}β}}{cosβ}$=2,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=1.
故答案为:1.

点评 本题主要考查了同角三角函数基本关系式,两角和的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,记z=x+2y的最小值为a,则($\frac{x}{2}$-$\frac{a}{\sqrt{x}}$)6展开式中x3项的系数为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,点D是BC的中点,点E是AC的中点,点F在线段AD上并且AF=2DF,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{EF}$=(  )
A.$\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{2}$$\overrightarrow{b}$C.$\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{3}$$\overrightarrow{b}$D.$\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.平行四边形ABCD中,M为BC的中点,若$\overrightarrow{AB}=λ\overrightarrow{AM}+μ\overrightarrow{DB}$,则λμ=$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}{x^2},0<x≤1\\|{ln({x-1})}|,x>1\end{array}\right.$,若方程f(x)=kx-2有两个不相等的实数根,则实数k的取值范围是k≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=(\frac{x^2}{2}-kx)lnx+\frac{x^2}{4}$.
(Ⅰ)若f(x)在定义域内单调递增,求实数k的值;
(Ⅱ)若f(x)的极小值大于0,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△AOB中,∠AOB=120°,|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,过O作OD垂直AB于点D,点E为线段OD的中点,则$\overrightarrow{OE}$•$\overrightarrow{EA}$的值为(  )
A.$\frac{5}{19}$B.$\frac{27}{76}$C.$\frac{3}{76}$D.$\frac{3}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)求S1,S2,S3,S4并猜想Sn的表达式(不必写出证明过程);
(2)设bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足${b_1}=\frac{1}{2}$,${b_2}=\frac{1}{4}$,对任意n∈N*,都有$b_{n+1}^2=b{\;}_n{b_{n+2}}$.
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn.若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.

查看答案和解析>>

同步练习册答案