精英家教网 > 高中数学 > 题目详情
设{an}是公差为d(d≠0)的等差数列,它的前10项和S10=10,则a1,a2,a4成等比数列.证明:a1=d.
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:由已知可得a22=a1•a4,代入等差数列的通项可转化为(a1+d)2=a1•(a1+3d),整理可得结论.
解答: 证明:因为a1,a2,a4成等比数列,所以a22=a1a4
而{an}是等差数列,有a2=a1+d,a4=a1+3d
于是(a1+d)2=a1(a1+3d)
即a12+2a1d+d2=a12+3a1d
化简得a1=d.
点评:本小题主要考查等比数列的性质、等差数列及其通项公式,考查运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知∠A=150°,a=3,则其外接圆的半径R的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数f(x)=2|x|的图象,并根据图象判断f(
x1+x2
2
)与
f(x1)+f(x2)
2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(2,3)且以y=±
3
x为渐近线的双曲线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A为函数f(x)=ln(-x2-2x+8)的定义域,集合B为不等式(ax-
1
a
)(x+4)≤0的解集.
(Ⅰ) 写出f(x)的单调区间;
(Ⅱ) 若B⊆∁RA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为可导函数,且满足
lim
x→0
f(1)-f(1-2x)
x
=-2,则曲线y=f(x)上以点(1,f(1))为切点的切线倾斜角为(  )
A、arctan2
B、π-arctan2
C、45°
D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ln(x-1)+
4-x2
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a4+a7+a10=18,a6+a8+a10=27,若ak=21,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆的离心率为
1
2
,左焦点到左顶点的距离为1,则椭圆的长轴长是(  )
A、4
B、
3
C、2
D、2
3

查看答案和解析>>

同步练习册答案