精英家教网 > 高中数学 > 题目详情
3.已知f(x)=x2-2x+a,若f(x)≥2恒成立,则a的取值范围是a≥3.

分析 问题转化为x2-2x+a-2≥0对x∈R恒成立,只需△=22-4(a-2)≤0,解出即可.

解答 解:不等式f(x)≥2对x∈R恒成立,
等价于x2-2x+a-2≥0对x∈R恒成立,
则只需△=22-4(a-2)≤0即可,
解得:a≥3,
故答案为:a≥3.

点评 本题考查了二次函数的性质问题,考查转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=ecosx(-π≤x≤π)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义集合A与B的运算:A⊙B={x|x∈A或x∈B,且x∉A∩B},已知集合A={1,2,3,4},B={3,4,5,6,7},则(A⊙B)⊙B为(  )
A.{1,2,3,4,5,6,7}B.{1,2,3,4}C.{1,2}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a1=1,an+1=an+2n+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-2$\sqrt{3}$cos2(x$+\frac{π}{4}$)+2sin(x$+\frac{π}{4}$)sin(x$-\frac{π}{4}$)$+\sqrt{3}$.
(I)求函数f(x)的单凋递增区间;
(Ⅱ)当x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(1,sinx),$\overrightarrow{b}$=(sin2x,cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调递增区间;
(2)若f(α)=$\frac{3}{4}$,且α∈[0,$\frac{π}{2}$],求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是二次函数,且函数f(x)满足f(0)=2,f(x+1)-f(x)=2x+1.
(1)求f(x)的解析式;
(2)若g(x)=x2-$\sqrt{f(x)}$,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用定义法讨论函数f(x)=x+$\frac{4}{x}$在定义域上的单调性,并画出图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;平面PAC⊥平面BDE;
(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案