精英家教网 > 高中数学 > 题目详情
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
【答案】分析:(1)利用线面平行的判定与性质,可证平面PAB与平面PCD的交线平行于底面;
(2)先作出OP与平面PCD所成的角,再求出OC,OF,求出cos∠COF,利用二倍角公式,即可求得cos∠COD.
解答:(1)证明:设平面PAB与平面PCD的交线为l,则
∵AB∥CD,AB?平面PCD,∴AB∥平面PCD
∵AB?面PAB,平面PAB与平面PCD的交线为l,∴AB∥l
∵AB在底面上,l在底面外
∴l与底面平行;
(2)解:设CD的中点为F,连接OF,PF
由圆的性质,∠COD=2∠COF,OF⊥CD
∵OP⊥底面,CD?底面,∴OP⊥CD
∵OP∩OF=O
∴CD⊥平面OPF
∵CD?平面PCD
∴平面OPF⊥平面PCD
∴直线OP在平面PCD上的射影为直线PF
∴∠OPF为OP与平面PCD所成的角
由题设,∠OPF=60°
设OP=h,则OF=OPtan∠OPF=
∵∠OCP=22.5°,∴
∵tan45°==1
∴tan22.5°=
∴OC==
在Rt△OCF中,cos∠COF===
∴cos∠COD=cos(2∠COF)=2cos2∠COF-1=17-12
点评:本题考查线面平行的判定与性质,考查空间角,考查学生的计算能力,正确找出线面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(
x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x0,y0,m,n的代数式分别表示xE和xF
(Ⅱ)已知“若点P(x0,y0)是圆C:x2+y2=R2上的任意一点(
x0•y0≠0),MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则xExF=R2”.类比这一结论,我们猜想:“若曲线C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
(如图),则xE•xF也是与点M、N、P位置无关的定值”,请你对该猜想给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中数学 来源:高三数学教学与测试 题型:044

已知球的半径为R,内切于顶点为P的圆锥(轴截面如图).设∠=θ.

  

(1)试用R,θ表示圆锥底面半径r,母线l和全面积S;

(2)当θ为何值时,圆锥全面积取最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试安徽卷理数 题型:044

如图,圆锥顶点为p.底面圆心为o,其母线与底面所成的角为22.5°.AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°

(Ⅰ)证明:平面PAB与平面PCD的交线平行于底面;

(Ⅱ)求cos∠COD.

查看答案和解析>>

同步练习册答案