精英家教网 > 高中数学 > 题目详情
5.已知:函数f(x)=2cos2x+$\sqrt{3}$sin2x+a(a∈R,a为常数)
(1)若x∈R,求f(x)的最小正周期、单调递增区间;
(2)若x∈R,求f(x)的对称轴方程和对称中心坐标;
(3)若f(x)在[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值与最小值之和为3,求a的值.

分析 (1)先利用辅助角和二倍角的基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)结合三角函数的图象和性质直接求解即可.
(3)x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值,即得到a的取值

解答 解:函数f(x)=2cos2x+$\sqrt{3}$sin2x+a=1+cos2x+$\sqrt{3}$sin2x+a,(a∈R,a为常数)
化简可得:$f(x)=2sin(2x+\frac{π}{6})+a+1$.
(1)最小正周期$T=\frac{2π}{2}=π$.
令2k$π-\frac{π}{2}$≤$2x+\frac{π}{6}$≤$2kπ+\frac{π}{2}$,k∈Z
解得:$kπ-\frac{π}{3}$$≤x≤kπ+\frac{π}{6}$
∴单调递增区间$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈Z.
(2)由对称轴方程:2x$+\frac{π}{6}$=kπ$+\frac{π}{2}$
解得:$x=\frac{kπ}{2}+\frac{π}{6}$,k∈Z
∴对称轴方程$x=\frac{kπ}{2}+\frac{π}{6}$,k∈Z
由对称中心的横坐标:2x$+\frac{π}{6}$=kπ,
解得:x=$\frac{kπ}{2}-\frac{π}{6}$
∴对称中心坐标($\frac{kπ}{2}-\frac{π}{6}$,a+1)k∈Z.
(3)∵$x∈[-\frac{π}{6},\frac{π}{4}]$
∴⇒$2x∈[-\frac{π}{3},\frac{π}{2}]$
∴⇒$2x+\frac{π}{6}∈[-\frac{π}{6},\frac{2π}{3}]$
故得$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$
即f(x)min=a,f(x)max=a+3,
∴a+a+3=3,
解得:a=0.
故得f(x)在[-$\frac{π}{6}$,$\frac{π}{4}$]上最大值与最小值之和为3时,a的值为0.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知m∈R,函数f(x)=x3-mx在[1,+∞)上是单调增函数,则m的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可兑换现金50元,有二等奖券3张,每张可兑换现金10元,其余6张券没有奖,某顾客从这10张券中任取2张,
(1)求该顾客中奖的概率;
(2)求该顾客获得现金总额ξ(元)的概率分布列;
(3)求该顾客获得现金总额ξ(元)的数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(1)若$\frac{π}{2}<α<π$,sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司客服中心有四部咨询电话,某一时刻每部电话能否被接通是相互独立的.已知每部电话响第一声时被接通的概率是0.1,响第二声时被接通的概率是0.3,响第三声时被接通的概率是0.4,响第四声时被接通的概率是0.1.假设有ξ部电话在响四声内能被接通.
(Ⅰ)求四部电话至少有一部在响四声内能被接通的概率;
(Ⅱ)求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数a和b是区间[0,1]内任意两个数,则使b<a2的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知球的直径SC=4,A,B是该球球面上的两点,∠ASC=∠BSC=30°,且AB=$\sqrt{3}$,则三棱锥S-ABC的体积为(  )
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设m为常数,抛物线y=x2+2mx-m3-2m2,则当m分别取0,-3,-2时,在平面直角坐标系中图象最恰当的是(这里省略了坐标轴)(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果执行如图所示的程序框图,则输出的结果为(  )
A.5B.7C.8D.13

查看答案和解析>>

同步练习册答案