精英家教网 > 高中数学 > 题目详情

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,试问:的外接圆是否恒过轴上的定点(异于点)?若是,求该定点坐标;若否,请说明理由.

【答案】1;(2)是,

【解析】

1)利用椭圆的定义可得,结合是等腰直角三角形,可求椭圆的方程;

2)设出直线方程,表示出的坐标,求出圆心,利用半径相等可得定点坐标.

1)∵的周长为,由定义可知,

,∴

又∵是等腰直角三角形,且,∴

∴椭圆的方程为

2)设,则

∴直线的斜率之积为

设直线的斜率为,则直线

,可得,同理

假设的外接圆恒过定点了

则其圆心

∴解得

的外接圆恒过轴定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是无穷等比数列,若的每一项都等于它后面所有项的倍,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线和曲线交于AB两点(点A在第二象限).过A作斜率为的直线交曲线M于点C(不同于点A),过点作斜率为的直线交曲线EF两点,且

I)求的取值范围;

(Ⅱ)设的面积为S,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】fx)=|lnx|,若函数gx)=fx)-ax在区间(0,4)上有三个零点,则实数a的取值范围是(

A. (0,B. ,e)C. D. (0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中

1)当时,设函数,求函数的极值.

2)若函数在区间上递增,求的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某国营企业集团公司现有员工1000名,平均每人每年创造利润10万元.为了激化内部活力,增强企业竞争力,集团公司董事会决定优化产业结构,调整出)名员工从事第三产业;调整后,他们平均每人每年创造利润万元,剩下的员工平均每人每年创造的利润可以提高.

(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?

(Ⅱ)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则实数的取值范围是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,某校在高中生中随机抽取100名学生进行了问卷调查,得到如下列联表:

喜欢数学

不喜欢数学

合计

男生

40

女生

30

合计

50

100

1)请将上面的列联表补充完整;

2)能否在犯错误的概率不超过0.001的前提下认为喜欢数学与性别有关?说明你的理由;

3)若在接受调查的所有男生中按照是否喜欢数学进行分层抽样,现随机抽取6人,再从6人中抽取3人,求至少有1不喜欢数学的概率.

下面的临界值表供参考:

0.05

0.010

0.005

0.001

k

3.841

6.635

7.879

10.828

(参考公式:,其中.

查看答案和解析>>

同步练习册答案