精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,底面为梯形,, 平面,的中点

(Ⅰ)证明:
(Ⅱ)若,求二面角的余弦值
(Ⅰ)详见解析;(Ⅱ)二面角的余弦值

试题分析:(Ⅰ)证明:,在立体几何中,证明线线垂直,往往转化为证明线面垂直,从而得线线垂直,本题可利用线面垂直的判定定理,可先证明平面,即证垂直平面内的两条相交直线即可,由题意平面,即,在平面内再找一条垂线即可,由已知,,由余弦定理求出,从而可得,即,从而可证,即得平面;然后利用线面垂直的性质可得;(Ⅱ)求二面角的余弦值,可建立空间直角坐标系,利用向量法求二面角的大小,本题由(Ⅰ)可知,故以以为坐标原点,分别以轴建立空间直角坐标系,设出两个半平面的法向量,利用法向量的性质,求出两个半平面的法向量,利用法向量来求平面与平面的夹角的余弦值.
试题解析:(Ⅰ)由余弦定理得BD==
∴BD2+AB2=AD2,∴∠ABD=90°,BD⊥AB,∵AB∥DC, ∴BD⊥DC
∵PD⊥底面ABCD,BDÌ底面ABCD,∴BD⊥PD
又∵PD∩DC=D,  ∴BD⊥平面PDC,又∵PCÌ平面PDC, ∴BD⊥PC         (6分)

(Ⅱ)已知AB=1,AD=CD=2,PD=,
由(Ⅰ)可知BD⊥平面PDC.
如图,以D为坐标原点,射线DB为x轴的正半轴建立空间直角坐标系D—xyz,则
D(0,0,0),B(,0,0),C(0,2,0),P(0,0,),M(0,1,).
=(,0,0),=(0,1,),=(0,-2,),=(,-2,0) (7分)
设平面BDM的法向量=(x,y,z),则
x=0,y+z=0,令z=, ∴取=(0,-1,)       (8分)
同理设平面BPM的法向量为=(a,b,c),则
=(,1,)            (10分)
∴cos<,> ==-             (11分)
∴二面角D-BM-P的余弦值大小为.          (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,且满足.

(1)求证:
(2)求点的距离;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不重合的平面,在下列条件中,可判定的是(  )
A.都与平面垂直
B.内不共线的三点到的距离相等
C.内的两条直线且
D.是两条异面直线且

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:
①若,,则;②若,,且,则;③若,,则; ④若,,且,则.其中正确命题的序号是(    )
A.①④ B.②③ C.②④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,的直径,垂直于所在的平面,是圆周上不同于的任意一点,则图中直角三角形有        个.(要求:只需填直角三角形的个数,不需要具体指出三角形名称).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示直线表示不同的平面,则下列命题中正确的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同直线,是两个不同的平面,下列命题正确的是(   )
A.B.,则
C.D.

查看答案和解析>>

同步练习册答案