分析 (1)利用对数的运算性质,可得结论;
(2)利用函数是偶函数,f(x)=f(x-2),当x∈[0,1]时,f(x)=2x+1,即可求出结论.
解答 解:(1)原式=log3${3}^{\frac{3}{2}}$+2+23-20150=$\frac{3}{2}+2+8-1=\frac{21}{2}$…(6分)
(2)因为f(x)=f(x-2),所以f($\frac{3}{2}$)=f($\frac{3}{2}$-2)=f(-$\frac{1}{2}$)
因为函数f(x)是定义在R上的偶函数,
所以f(-x)=f(x),
所以f($\frac{3}{2}$)=f($\frac{3}{2}$-2)=f(-$\frac{1}{2}$)=f($\frac{1}{2}$),
当x∈[0,1]时,f(x)=2x+1,
所以f($\frac{3}{2}$)=f($\frac{3}{2}$-2)=f(-$\frac{1}{2}$)=f($\frac{1}{2}$)=2×$\frac{1}{2}$+1=2.…(12分)
点评 本题考查对数的运算性质,函数的奇偶性,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x≤2} | B. | {x|1≤x≤2} | C. | {1,2} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com