精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,则a的取值范围是$1<a≤\frac{5}{3}$.

分析 若对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,则函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$在R上为增函数,里面可得答案.

解答 解:若对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,
则函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$在R上为增函数,
故$\left\{\begin{array}{l}a-1>0\\ a>1\\ 3a-4≤1\end{array}\right.$,
解得:$1<a≤\frac{5}{3}$,
故答案为:$1<a≤\frac{5}{3}$

点评 本题考查的知识点是恒成立问题,分段函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知直线l1:y=kx-1与双曲线x2-y2=1的左支交于A、B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(-2,0)及线段AB的中点Q且l2在y轴上截距为-16,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.f(x)=-3x+1在[0,1]上的最大值和最小值分别是(  )
A.1,0B.2,0C.2,-1D.1,-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某电商新售A产品,售价每件50元,年销售量为11.8万件,为支持新品发售,第一年免征营业税,第二年需征收销售额x%的营业税(即每销售100元征税x元),第二年电商决定将A产品的售价提高$\frac{50•x%}{1-x%}$元,预计年销售量减少x万件,要使第二年A产品上交的营业税不少于10万元,则x的最大值是(  )
A.2B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(1)求证:D1E⊥A1D;
(2)是否存在点E,使得${V_{B-CE{D_1}}}=\frac{1}{9}$?若存在,求出AE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$C:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>b>0)$的一条渐近线与函数y=1+lnx+ln2的图象相切,则双曲线C的离心率是(  )
A.2B.$\sqrt{5}$C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:(x+2)(x-6)≤0,q:|x-2|<5,命题“p∨q”为真,“?p”为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求值:log3$\sqrt{27}$+7${\;}^{lo{g}_{7}2}$+16${\;}^{\frac{3}{4}}$-20150
(2)设函数f(x)是定义在R上的偶函数,且f(x)=f(x-2),当x∈[0,1]时,f(x)=2x+1,求f($\frac{3}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.要得到函数y=sin2x的图象,只需将函数y=cos(2x-$\frac{π}{3}$)的图象向右(左、右)平移$\frac{π}{12}$个单位长度.

查看答案和解析>>

同步练习册答案