精英家教网 > 高中数学 > 题目详情
18.已知直线l1:y=kx-1与双曲线x2-y2=1的左支交于A、B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(-2,0)及线段AB的中点Q且l2在y轴上截距为-16,求直线l1的方程.

分析 (1)直线方程与双曲线方程联立得(1-k2)x2+2kx-2=0,设A(x1,y1),B(x2,y2),由直线l1与双曲线左支交于A,B两点,可得$\left\{{\begin{array}{l}{△>0}\\{{x_1}+{x_2}<0}\\{{x_1}{x_2}>0}\end{array}}\right.即\left\{{\begin{array}{l}{4{k^2}+8({1-{k^2}})>0}\\{\frac{2k}{{{k^2}-1}}<0}\\{\frac{2}{{{k^2}-1}}>0}\end{array}}\right.$,解出即可得出.
(2)由已知得直线l2的方程为:8x+y+16=0,设Q(x0,y0),利用中点坐标公式与根与系数的关系可得Q坐标,代入直线l2的方程解出即可得出.

解答 解:(1)由$\left\{\begin{array}{l}{y=kx-1}\\{{x}^{2}-{y}^{2}=1}\end{array}\right.$,得(1-k2)x2+2kx-2=0,设A(x1,y1),B(x2,y2),
则${x_1}+{x_2}=\frac{2k}{{{k^2}-1}},{x_1}{x_2}=\frac{2}{{{k^2}-1}}$,
∵直线l1与双曲线左支交于A,B两点,
∴$\left\{{\begin{array}{l}{△>0}\\{{x_1}+{x_2}<0}\\{{x_1}{x_2}>0}\end{array}}\right.即\left\{{\begin{array}{l}{4{k^2}+8({1-{k^2}})>0}\\{\frac{2k}{{{k^2}-1}}<0}\\{\frac{2}{{{k^2}-1}}>0}\end{array}}\right.$
解得:$-\sqrt{2}<k<-1$.
(2)由已知得直线l2的方程为:8x+y+16=0,设Q(x0,y0),
则${x_0}=\frac{{{x_1}+{x_2}}}{2}=\frac{k}{{{k^2}-1}},{y_0}=k{x_0}-1=\frac{1}{{{k^2}-1}}$,
∵Q在直线l2,∴$\frac{8k}{{{k^2}-1}}+\frac{1}{{{k^2}-1}}+16=0$,化简得:16k2+8k-15=0,
分解因式得:(4k+5)(4k-3)=0,
∴$k=-\frac{5}{4}或k=\frac{3}{4}$,
又∵$-\sqrt{2}<k<-1$,∴$k=-\frac{5}{4}$,
∴直线l1的方程为:$y=-\frac{5}{4}x-1$.

点评 本题考查了直线与双曲线相交问题、中点坐标公式、一元二次方程的根与系数的关系、不等式的解法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+$\frac{f(5)}{f(4)}$+…+$\frac{f(2014)}{f(2013)}$=4026.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a12+a3=4,且a5+a6+a7=18.
(1)求数列{an}的通项公式;
(2)若a1,a2,a4成等比数列,求数列{$\frac{1}{(2n+2){a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知cos($\frac{π}{4}$+α)=$\frac{2}{5}$,则sin2α=(  )
A.$\frac{7}{25}$B.-$\frac{17}{25}$C.-$\frac{7}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,F1,F2是双曲线C1:x2-$\frac{y^2}{3}$=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点,若|F1F2|=|F1A|,则C2的离心率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.圆M:x2+y2-2y=24,直线l:x+y=11,l上一点A的横坐标为a,过点A作圆M的两条切线l1,l2,切点为B,C.
(Ⅰ)当a=0时,求直线l1,l2的方程;
(Ⅱ)是否存在点A,使得$\overrightarrow{AB}•\overrightarrow{AC}$=-2?若存在,求出点A的坐标,若不存在,请说明理由.
(Ⅲ)求证当点A在直线l运动时,直线BC过定点P0
(附加题)问:第(Ⅲ)问的逆命题是否成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(x2+ax+a).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:当a≥4时,函数f(x)存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{k}{x}$有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2>$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,则a的取值范围是$1<a≤\frac{5}{3}$.

查看答案和解析>>

同步练习册答案