分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)结合(Ⅰ)得到函数f(x)在x∈[-a,+∞)上f(x)≥f(-2),而x∈(-∞,-a)时,f(x)=ex[x(x+a)+a]>0,从而求出f(x)的最小值是f(-2);法二:根据函数的单调性求出f(x)的最小值是f(-2)即可.
解答 解:(Ⅰ)f′(x)=ex(x+2)(x+a),
由f′(x)=0,解得:x=-2或x=-a,
①-a=-2即a=2时,f′(x)=ex(x+2)2≥0恒成立,
∴函数f(x)在R递增;
②-a>-2即a<2时,x,f′(x),f(x)的变化如下:
| x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 递增 | 递减 | 递增 |
| x | (-∞,-a) | -a | (-a,-2) | -2 | (-2,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 递增 | 递减 | 递增 |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{{5}^{2-x}-1}$ | B. | y=($\frac{1}{2}$)1-2x | C. | y=$\sqrt{(\frac{1}{2})^{x}-1}$ | D. | y=$\sqrt{1-{2}^{x}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | $({-∞,1}),({\frac{4}{3},4})$ | C. | $({0,\frac{4}{3}})$ | D. | (0,1),(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com