精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{1}{{2}^{x}+1}$-$\frac{1}{2}$.
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性,并用定义证明;
(3)解不等式f(f(x))+f($\frac{3}{8}$)<0.

分析 (1)根据函数奇偶性的定义进行判断即可,
(2)根据函数单调性的定义,利用定义法进行证明,
(3)根据函数奇偶性和单调性之间的关系将不等式进行转化求解即可.

解答 解:(1)由2x+1>1得函数的定义域为R,
又f(-x)+f(x)=$\frac{1}{{2}^{-x}+1}$-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$-$\frac{1}{2}$=$\frac{{2}^{x}}{{2}^{x}+1}$+$\frac{1}{{2}^{x}+1}$-1=1-1=0.
则f(-x)=-f(x),
 故f(x)为奇函数.         
(2)f(x)为R上的减函数    证明如下:
任取x1<x2,则f(x1)-f(x2)=$\frac{1}{{2}^{{x}_{1}}+1}$-$\frac{1}{2}$-$\frac{1}{{2}^{{x}_{2}}+1}$+$\frac{1}{2}$=$\frac{1}{{2}^{{x}_{1}}+1}$-$\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{1}}+1)}$,
∵x1<x2,∴2${\;}^{{x}_{1}}$<2${\;}^{{x}_{2}}$,
则f(x1)-f(x2)=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{1}}+1)}$>0,
∴f(x1)>f(x2),
故f(x)为R上的减函数.
(3)由(1)(2)知f(x)在R上是奇函数且单调递减,
由f(f(x))+f($\frac{3}{8}$)<0得f(f(x))<-f($\frac{3}{8}$)=f(-$\frac{3}{8}$),
则f(x)>-$\frac{3}{8}$,
∴$\frac{1}{{2}^{x}+1}$-$\frac{1}{2}$>-$\frac{3}{8}$,
即2x<7,得x<log27,
故不等式的解集为(-∞,log27).

点评 本题主要函数奇偶性和单调性判断,利用函数奇偶性和单调性的定义是解决本题的关键.考查学生的转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,已知a1=2,a2=4,那么a4=(  )
A.6B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,F1,F2是双曲线C1:x2-$\frac{y^2}{3}$=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点,若|F1F2|=|F1A|,则C2的离心率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(x2+ax+a).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:当a≥4时,函数f(x)存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{k}{x}$有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2>$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.x>1,则函数y=x+$\frac{1}{x-1}$的值域是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中是真命题的为(  )
A.“存在x0∈R,x02+sinx0+ex0<1”的否定是“不存在x0∈R,x02+sinx0+ex0<1”
B.在△ABC中,“AB2+AC2>BC2”是“△ABC为锐角三角形”的充分不必要条件
C.任意x∈N,3x>1
D.存在x0∈(0,$\frac{π}{2}$),sinx0+cosx0=tanx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}中,a1+3a9+a17=150 则2a10-a11的值是(  )
A.30B.32C.34D.25

查看答案和解析>>

同步练习册答案