精英家教网 > 高中数学 > 题目详情
14.x>1,则函数y=x+$\frac{1}{x-1}$的值域是[3,+∞).

分析 利用不等式法求值域即可.

解答 解:∵x>1,则,x-1>0,$\frac{1}{x-1}>0$;
那么:函数y=x+$\frac{1}{x-1}$=x-1+$\frac{1}{x-1}$+1≥$2\sqrt{(x-1)•\frac{1}{x-1}}+1$=3,当且仅当x=2时取等号.
所以函数y的值域是[3,+∞).

点评 本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x3-x-1的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数值域是(0,+∞)的是(  )
A.y=$\frac{1}{{5}^{2-x}-1}$B.y=($\frac{1}{2}$)1-2xC.y=$\sqrt{(\frac{1}{2})^{x}-1}$D.y=$\sqrt{1-{2}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{{2}^{x}+1}$-$\frac{1}{2}$.
(1)判断f(x)的奇偶性;
(2)判断f(x)的单调性,并用定义证明;
(3)解不等式f(f(x))+f($\frac{3}{8}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若等比数列{an}的前n项和Sn=($\frac{1}{2}$)n+a(n∈N*),则数列{an}的各项和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.f(x)=-3x+1在[0,1]上的最大值和最小值分别是(  )
A.1,0B.2,0C.2,-1D.1,-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2+2n(n∈N*),数列{bn}的前n项和Tn=2n-1(n∈N*).
(Ⅰ)求数列$\{\frac{1}{{{a_n}•{a_{n+1}}}}\}$的前n项和;
(Ⅱ)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(1)求证:D1E⊥A1D;
(2)是否存在点E,使得${V_{B-CE{D_1}}}=\frac{1}{9}$?若存在,求出AE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{16}{x}+{x^2},x∈(0,+∞)$
(1)利用函数单调性定义,求函数f(x)单调区间;
(2)已知函数g(x)=|lgx|.若0<a<b,且g(a)=g(b),求a2+16b的取值范围.

查看答案和解析>>

同步练习册答案