精英家教网 > 高中数学 > 题目详情
9.若等比数列{an}的前n项和Sn=($\frac{1}{2}$)n+a(n∈N*),则数列{an}的各项和为-1.

分析 由数列的前n项和求出首项和通项公式(n≥2),把首项代入求a,得到等比数列的通项公式,求出公比,代入无穷递缩等比数列的所有项和的公式得答案.

解答 解:由${S}_{n}=(\frac{1}{2})^{n}+a$,得${a}_{1}={S}_{1}=\frac{1}{2}+a$,
${a}_{n}={S}_{n}-{S}_{n-1}=(\frac{1}{2})^{n}+a-(\frac{1}{2})^{n-1}-a$=$-(\frac{1}{2})^{n}$(n≥2),
∵数列{an}是等比数列,∴$\frac{1}{2}+a=-\frac{1}{2}$,得a=-1.
∴${a}_{n}=-(\frac{1}{2})^{n}$,则${a}_{1}=-\frac{1}{2},q=\frac{1}{2}$,
则数列{an}的各项和为$\frac{{a}_{1}}{1-q}=\frac{-\frac{1}{2}}{1-\frac{1}{2}}=-1$.
故答案为:-1.

点评 本题考查等比数列的通项公式,考查了无穷递缩等比数列的所有项和的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.抛物线y2=6x的准线方程是(  )
A.$x=-\frac{3}{2}$B.$x=\frac{3}{2}$C.$y=-\frac{3}{2}$D.$y=\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下四个关于圆锥曲线的命题中
①设A,B为两个定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线;
②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
③设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),则动点P的轨迹为椭圆;
④过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有3条;
其中真命题的序号为②④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{e_1}$=$[\begin{array}{l}1\\ 1\end{array}]$,并且矩阵M将点(-1,3)变换为(0,8).
(1)求矩阵M;
(2)求曲线x+3y-2=0在M的作用下的新曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.x>1,则函数y=x+$\frac{1}{x-1}$的值域是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.集合{x|-12≤x<10,或x>11}用区间表示为[-12,10)∪(11,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=$\frac{1}{2}$,an+1=an+$\frac{1}{2}$
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,若不等式组$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{ax-y+1≥0}\end{array}}$(a为常数)所表示的平面区域的面积等于2,则z=(x+1)2+(y+1)2的最小值为$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案