精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系中,若不等式组$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{ax-y+1≥0}\end{array}}$(a为常数)所表示的平面区域的面积等于2,则z=(x+1)2+(y+1)2的最小值为$\frac{9}{2}$.

分析 由题意分a<0、a≥0画出图形,可知当a<0时,不等式组所表示的平面区域是一个无限的角形区域,面积不可能为2;当a≥0时,由z=(x+1)2+(y+1)2的几何意义,即可行域内的动点与定点(-1,-1)的距离的平方得答案.

解答 解:当a<0时,不等式组所表示的平面区域,如图甲中的M,一个无限的角形区域,面积不可能为2,故只能a≥0;
此时不等式组所表示的平面区域如图乙中的N,区域为三角形区域,若这个三角形的面积为2,则AB=4,即点B的坐标为(1,4),代入y=ax+1,得a=3,
z=(x+1)2+(y+1)2的最小值即平面区域N中的点到(-1,-1)距离的平方的最小值,
由点到直线的距离公式可得:(-1,-1)到直线x+y-1=0的距离d=$\frac{|-1×1-1×1-1|}{\sqrt{2}}=\frac{3}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$.
∴${z_{min}}=\frac{9}{2}$.

故答案为:$\frac{9}{2}$.

点评 本题考查简单的线性规划,考查分类讨论、数形结合等解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若等比数列{an}的前n项和Sn=($\frac{1}{2}$)n+a(n∈N*),则数列{an}的各项和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等比数列{an}中,若a1=1,a3a5=4(a4-1),则a7=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)设点P(3,$\sqrt{5}$),直线l与圆C相交于A、B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x,y为任意实数,有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三个数中最大数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{16}{x}+{x^2},x∈(0,+∞)$
(1)利用函数单调性定义,求函数f(x)单调区间;
(2)已知函数g(x)=|lgx|.若0<a<b,且g(a)=g(b),求a2+16b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(sinα+cosα)=sinα•cosα,则f(sin$\frac{π}{6}$)的值为(  )
A.$-\frac{3}{8}$B.$\frac{1}{8}$C.$-\frac{1}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线的参数方程为$\left\{\begin{array}{l}x=-3+tcosα\\ y=1+tsinα\end{array}\right.$(为参数).取原点为极点,x轴的非负半轴为极轴,并取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线经过点(0,4),点P是曲线上任意一点,求点P到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(1-x)的解集是(  )
A.[-2,-1]B.[-2,1)C.[-1,1)D.[-1,+∞)

查看答案和解析>>

同步练习册答案