| A. | $-\frac{3}{8}$ | B. | $\frac{1}{8}$ | C. | $-\frac{1}{8}$ | D. | $\frac{{\sqrt{3}}}{8}$ |
分析 用换元法求出函数f(x)的解析式,从而可求函数值.
解答 解:令sinα+cosα=t(t∈[-$\sqrt{2}$,$\sqrt{2}$]),
平方后化简可得 sinαcosα=$\frac{{t}^{2}-1}{2}$,
再由f(sinα+cosα)=sinαcosα,得f(t)=$\frac{{t}^{2}-1}{2}$,
所以f(sin$\frac{π}{6}$)=f($\frac{1}{2}$)=$\frac{(\frac{1}{2})^{2}-1}{2}$=-$\frac{3}{8}$.
故选:A.
点评 本题主要考查换元法求函数的解析式,注意换元中变量取值范围的变化,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{x|x=2kπ+\frac{π}{3},k∈Z\}$ | B. | $\{x|x=2kπ+\frac{5π}{3},k∈Z\}$ | ||
| C. | $\{x|x=2kπ±\frac{π}{3},k∈Z\}$ | D. | $\{x|x=kπ+{(-1)^k}\frac{π}{3},k∈Z\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left.\begin{array}{l}m∥n\\ m⊥α\end{array}\right\}⇒n⊥α$ | B. | $\left.\begin{array}{l}m⊥α\\ n⊥α\end{array}\right\}⇒m∥n$ | C. | $\left.\begin{array}{l}m⊥α\\ n∥α\end{array}\right\}⇒m⊥n$ | D. | $\left.\begin{array}{l}m∥α\\ m⊥n\end{array}\right\}⇒n⊥α$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com