13£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-3+tcos¦Á\\ y=1+tsin¦Á\end{array}\right.$£¨Îª²ÎÊý£©£®È¡Ô­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ²¢È¡ÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È£®
£¨1£©°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢ËµÃ÷ÇúÏßCµÄÐÎ×´£»
£¨2£©ÈôÖ±Ïß¾­¹ýµã£¨0£¬4£©£¬µãPÊÇÇúÏßÉÏÈÎÒâÒ»µã£¬ÇóµãPµ½Ö±ÏߵľàÀëµÄ×îСֵ£®

·ÖÎö £¨1£©ÇúÏßCÖ±½Ç×ø±ê·½³ÌΪ£ºy2=4x£¬¿ÉµÃÇúÏßCµÄÐÎ×´£»
£¨2£©Çó³öÖ±ÏߵįÕͨ·½³Ì£¬ÉèP£¨4t2£¬4t£©£¬ÔòµãPµ½Ö±ÏߵľàÀë$d=\frac{{|4{t^2}-4t+4|}}{{\sqrt{2}}}=\frac{{|4{{£¨t-\frac{1}{2}£©}^2}+3|}}{{\sqrt{2}}}$£¬¼´¿ÉÇóµãPµ½Ö±ÏߵľàÀëµÄ×îСֵ£®

½â´ð ½â£º£¨1£©ÇúÏßCÖ±½Ç×ø±ê·½³ÌΪ£ºy2=4x£¬
¡àÇúÏßCÊǶ¥µãΪO£¨0£¬0£©£¬½¹µãΪF£¨1£¬0£©µÄÅ×ÎïÏߣ»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡­5·Ö
£¨2£©Ö±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-3+tcos¦Á\\ y=1+tsin¦Á\end{array}\right.$£¨Îª²ÎÊý£©£¬¹ÊÖ±Ïß¹ýµã£¨-3£¬1£©£»
ÓÖÈôÖ±Ïß¾­¹ýµã£¨0£¬4£©£¬¡àÖ±ÏߵįÕͨ·½³ÌΪ£ºx-y+4=0£¬
ÓÉÒÑÖªÉèP£¨4t2£¬4t£©£¬ÔòµãPµ½Ö±ÏߵľàÀë$d=\frac{{|4{t^2}-4t+4|}}{{\sqrt{2}}}=\frac{{|4{{£¨t-\frac{1}{2}£©}^2}+3|}}{{\sqrt{2}}}$£¬
ËùÒÔµ±$t=\frac{1}{2}$£¬¼´µãP£¨1£¬2£©Ê±£¬dÈ¡µÃ×îСֵ$\frac{{3\sqrt{2}}}{2}$£¬
Òò´ËµãPµ½Ö±ÏߵľàÀëµÄ×îСֵΪ$\frac{{3\sqrt{2}}}{2}$£® ¡­10·Ö£®

µãÆÀ ±¾Ì⿼²éÁËÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÊýÁÐ{an}ÖУ¬a1=$\frac{1}{2}$£¬an+1=an+$\frac{1}{2}$
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=$\frac{1}{{a}_{n}{a}_{n+1}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Èô²»µÈʽ×é$\left\{{\begin{array}{l}{x+y-1¡Ý0}\\{x-1¡Ü0}\\{ax-y+1¡Ý0}\end{array}}$£¨aΪ³£Êý£©Ëù±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýµÈÓÚ2£¬Ôòz=£¨x+1£©2+£¨y+1£©2µÄ×îСֵΪ$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®·½³Ì2cosx=1µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®$\{x|x=2k¦Ð+\frac{¦Ð}{3}£¬k¡ÊZ\}$B£®$\{x|x=2k¦Ð+\frac{5¦Ð}{3}£¬k¡ÊZ\}$
C£®$\{x|x=2k¦Ð¡À\frac{¦Ð}{3}£¬k¡ÊZ\}$D£®$\{x|x=k¦Ð+{£¨-1£©^k}\frac{¦Ð}{3}£¬k¡ÊZ\}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{a}{x}$ £¨x¡Ù0£¬³£Êýa¡ÊR£©£®
£¨1£©ÅжÏf£¨x£©µÄÆæÅ¼ÐÔ£¬²¢Ö¤Ã÷£»
£¨2£©Èôf£¨1£©=2£¬ÊÔÅжÏf£¨x£©ÔÚ[2£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£¬²¢Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®µ±aΪÈÎÒâʵÊýʱ£¬Ö±Ïßax-y+1-3a=0ºã¹ý¶¨µã£¨3£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èômn±íʾֱÏߣ¬¦Á±íÊ¾Æ½Ãæ£¬ÔòÏÂÁÐ˵·¨Öв»ÕýÈ·µÄΪ£¨¡¡¡¡£©
A£®$\left.\begin{array}{l}m¡În\\ m¡Í¦Á\end{array}\right\}⇒n¡Í¦Á$B£®$\left.\begin{array}{l}m¡Í¦Á\\ n¡Í¦Á\end{array}\right\}⇒m¡În$C£®$\left.\begin{array}{l}m¡Í¦Á\\ n¡Î¦Á\end{array}\right\}⇒m¡Ín$D£®$\left.\begin{array}{l}m¡Î¦Á\\ m¡Ín\end{array}\right\}⇒n¡Í¦Á$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx£¾2015£¬Ôòx£¾0¡±µÄÄæÃüÌâ
B£®ÃüÌâ¡°Èôxy=0£¬Ôòx=0»òy=0¡±µÄ·ñÃüÌâ
C£®ÃüÌâ¡°Èôx2+x-2=0£¬Ôòx=1¡±
D£®ÃüÌâ¡°Èôx2¡Ý1£¬Ôòx¡Ý1¡±µÄÄæ·ñÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®£¨3x+1£©nÕ¹¿ªÊ½ÖУ¬ËùÓÐÏîµÄϵÊýºÍ±È¶þÏîʽϵÊýºÍ¶à240£¬Ôòn=4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸