12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãP£¨3£¬$\sqrt{5}$£©£¬Ö±ÏßlÓëÔ²CÏཻÓÚA¡¢BÁ½µã£¬Çó$\frac{1}{|PA|}$+$\frac{1}{|PB|}$µÄÖµ£®

·ÖÎö £¨1£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt¿ÉµÃ£¬ËüµÄÖ±½Ç×ø±ê·½³Ì£»°ÑÔ²CµÄ¼«×ø±ê·½³ÌÒÀ¾Ý»¥»¯¹«Ê½×ª»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ  ${£¨{3-\frac{{\sqrt{2}}}{2}t}£©^2}+{£¨{\frac{{\sqrt{2}}}{2}t}£©^2}=5$£¬¼´${t^2}-3\sqrt{2}t+4=0$£¬½áºÏ¸ùÓëϵÊýµÄ¹ØÏµ½øÐнâ´ð£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}\right.$µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ$x+y-3-\sqrt{5}=0$£®
ÓÖÓÉ$¦Ñ=2\sqrt{5}sin¦È$µÃÔ²CµÄÖ±½Ç×ø±ê·½³ÌΪ${x^2}+{y^2}-2\sqrt{5}y=0$
¼´${x^2}+{£¨y-\sqrt{5}£©^2}=5$£»
£¨2£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬
µÃ  ${£¨{3-\frac{{\sqrt{2}}}{2}t}£©^2}+{£¨{\frac{{\sqrt{2}}}{2}t}£©^2}=5$£¬¼´${t^2}-3\sqrt{2}t+4=0$£¬
ÓÉÓÚ$¡÷={£¨{3\sqrt{2}}£©^2}-4¡Á4=2£¾0$£¬
¹Ê¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½ÊµÊý¸ù£¬
ËùÒÔ$\left\{{\begin{array}{l}{{t_1}+{t_2}=3\sqrt{2}}\\{{t_1}•{t_2}=4}\end{array}}\right.$£¬
¡àt1£¾0£¬t2£¾0¡­£¨7·Ö£©
ÓÖÓÐÖ±Ïßl¹ýµã$P£¨{3£¬\sqrt{5}}£©$£¬A¡¢BÁ½µã¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2
ËùÒÔ|PA|=t1£¬|PB|=t2
ËùÒÔ$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=\frac{1}{t_1}+\frac{1}{t_2}=\frac{{{t_1}+{t_2}}}{{{t_1}{t_2}}}=\frac{{3\sqrt{2}}}{4}$£®

µãÆÀ ±¾ÌâÖØµã¿¼²éÁËÖ±ÏߵIJÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=£¨x+a£©ex£¨x£¾-3£©£¬ÆäÖÐa¡ÊR£®
£¨1£©ÈôÇúÏßy=f£¨x£©ÔÚµãA£¨0£¬a£©´¦µÄÇÐÏßlÓëÖ±Ïßy=|2a-2|xƽÐУ¬ÇólµÄ·½³Ì£»
£¨2£©ÌÖÂÛº¯Êýy=f£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÊýÁÐ{an}ÖУ¬a1=$\frac{1}{2}$£¬an+1=an+$\frac{1}{2}$
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=$\frac{1}{{a}_{n}{a}_{n+1}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª$cos¦Á=\frac{2}{3}$£¬0£¼¦Á£¼¦Ð£¬Çó$cos£¨¦Á-\frac{¦Ð}{6}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=ax2-2x+1ÔÚ[1£¬+¡Þ£©Éϵݼõ£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®µÈ²îÊýÁÐ{an}ÖУ¬a1+3a9+a17=150 Ôò2a10-a11µÄÖµÊÇ£¨¡¡¡¡£©
A£®30B£®32C£®34D£®25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Èô²»µÈʽ×é$\left\{{\begin{array}{l}{x+y-1¡Ý0}\\{x-1¡Ü0}\\{ax-y+1¡Ý0}\end{array}}$£¨aΪ³£Êý£©Ëù±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýµÈÓÚ2£¬Ôòz=£¨x+1£©2+£¨y+1£©2µÄ×îСֵΪ$\frac{9}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®·½³Ì2cosx=1µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®$\{x|x=2k¦Ð+\frac{¦Ð}{3}£¬k¡ÊZ\}$B£®$\{x|x=2k¦Ð+\frac{5¦Ð}{3}£¬k¡ÊZ\}$
C£®$\{x|x=2k¦Ð¡À\frac{¦Ð}{3}£¬k¡ÊZ\}$D£®$\{x|x=k¦Ð+{£¨-1£©^k}\frac{¦Ð}{3}£¬k¡ÊZ\}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx£¾2015£¬Ôòx£¾0¡±µÄÄæÃüÌâ
B£®ÃüÌâ¡°Èôxy=0£¬Ôòx=0»òy=0¡±µÄ·ñÃüÌâ
C£®ÃüÌâ¡°Èôx2+x-2=0£¬Ôòx=1¡±
D£®ÃüÌâ¡°Èôx2¡Ý1£¬Ôòx¡Ý1¡±µÄÄæ·ñÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸