精英家教网 > 高中数学 > 题目详情
4.f(x)=-3x+1在[0,1]上的最大值和最小值分别是(  )
A.1,0B.2,0C.2,-1D.1,-2

分析 根据一次函数的图象和性质,可得f(x)在[0,1]上是减函数,进而得到最值.

解答 解:f(x)=-3x+1在[0,1]上是减函数,
则f(x)的最大值是f(0)=1,
最小值是f(1)=-2.
故选:D

点评 本题考查的知识点是函数的最值及其几何意义,一次函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a12+a3=4,且a5+a6+a7=18.
(1)求数列{an}的通项公式;
(2)若a1,a2,a4成等比数列,求数列{$\frac{1}{(2n+2){a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(x2+ax+a).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:当a≥4时,函数f(x)存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{k}{x}$有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2>$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.x>1,则函数y=x+$\frac{1}{x-1}$的值域是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某算法的程序框图如图所示,其中输入的变量x在1,&2,&3,&…,&24这24个整数中等可能随机产生.分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中是真命题的为(  )
A.“存在x0∈R,x02+sinx0+ex0<1”的否定是“不存在x0∈R,x02+sinx0+ex0<1”
B.在△ABC中,“AB2+AC2>BC2”是“△ABC为锐角三角形”的充分不必要条件
C.任意x∈N,3x>1
D.存在x0∈(0,$\frac{π}{2}$),sinx0+cosx0=tanx0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,则a的取值范围是$1<a≤\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x-1≥0},B={x|x2-x-2≤0},则A∩B=(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{1,2}D.

查看答案和解析>>

同步练习册答案