分析 (1)根据E,F分别是AB,AC的中点得到EF∥BC,应用判定定理即得证.
(2)由图1得CD⊥AB,BD⊥AD,BD⊥CD,得到BD⊥平面ACD.取AD的中点G,连接EG,求得$EG=\frac{3}{2}$,进一步计算体积.
解答 证明:(1)∵E,F分别是AB,AC的中点,![]()
∴EF∥BC,
∵BC?平面DEF,EF?平面DEF,
∴BC∥平面DEF.…(4分)
解:(2)∵如图1得CD⊥AB,BD⊥AD,BD⊥CD,
又∵CD∩AD=D,
∴BD⊥平面ACD.…(8分)
取AD的中点G,连接EG,
∵E是AB的中点,
∴$EG\underline{\underline{∥}}\frac{1}{2}BD$.
∴EG⊥平面ACD,$EG=\frac{3}{2}$,
∴${V_{A-EDF}}={V_{E-ADF}}=\frac{1}{3}{S_{△ADF}}•EG=\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×2×2×\frac{3}{2}=\frac{1}{2}$.…(12分)
点评 本题考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | |
| B. | f(x)的图象关于直线$x=\frac{π}{8}$ | |
| C. | 对称f(x)的最大值为$\sqrt{2}$ | |
| D. | 将f(x)的图象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$个单位长度后会得到一个奇函数的图象 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com