精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+$\frac{f(5)}{f(4)}$+…+$\frac{f(2014)}{f(2013)}$=4026.

分析 函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,可得$\frac{f(n+1)}{f(n)}$=f(1)=2,代入即可得出.

解答 解:∵函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,
∴f(n+1)=f(n)•f(1),可得$\frac{f(n+1)}{f(n)}$=f(1)=2,
则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+$\frac{f(5)}{f(4)}$+…+$\frac{f(2014)}{f(2013)}$=2×2013=4026.
故答案为:4026.

点评 本题考查了数列递推关系、数列求和、函数性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知点A(3,$\sqrt{3}$),O为坐标原点,点P(x,y)满足$\left\{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}\right.$,则满足条件点P所形成的平面区域的面积为$\sqrt{3}$,$\overrightarrow{OP}$在$\overrightarrow{OA}$方向上投影的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在下列各量之间存在相关关系的是(  )
①正方体的体积与棱长间的关系;
②一块农田的水稻产量与施肥量之间的关系;
③人的身高与年龄;
④森林中的同一种树木,其横断面直径与高度之间的关系;
⑤某户家庭用电量与电价间的关系.
A.②③B.③④C.④⑤D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2(-x2-2x+8).
(1)求f(x)的定义域和值域; 
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设定义在R上的函数f(x)满足:对任意的x,y∈R均有f(x+y)=f(x)+f(y)成立且当x>0时,f(x)>0
(1)判断f(x)的奇偶性并给出证明;
(2)判断f(x)的单调性并给出证明;
(3)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.“[x]”表示不超过实数x的最大的整数,如[1.3]=1,[2]=2,[-2.3]=-3,又记{x}=x-[x],已知函数f(x)=[x]-{x},x∈R,给出以下命题:
①f(x)的值域为R;
②f(x)在区间[k,k+1],k∈Z上单调递减;
③f(x)的图象关于点(1,0)中心对称;
④函数|f(x)|为偶函数.
其中所有正确命题的序号是①(将所有正确命题序号填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1是图2的三视图,三棱锥B-ACD中,E,F分别是棱AB,AC的中点.

(1)求证:BC∥平面DEF;
(2)求三棱锥A-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.棱长均为a的三棱锥的表面积是(  )
A.4a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{3\sqrt{3}}}{4}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:y=kx-1与双曲线x2-y2=1的左支交于A、B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(-2,0)及线段AB的中点Q且l2在y轴上截距为-16,求直线l1的方程.

查看答案和解析>>

同步练习册答案