精英家教网 > 高中数学 > 题目详情
19.在下列各量之间存在相关关系的是(  )
①正方体的体积与棱长间的关系;
②一块农田的水稻产量与施肥量之间的关系;
③人的身高与年龄;
④森林中的同一种树木,其横断面直径与高度之间的关系;
⑤某户家庭用电量与电价间的关系.
A.②③B.③④C.④⑤D.②③④

分析 根据题意,得出①⑤中的两个变量是函数关系,②③④中的两个变量是线性相关关系.

解答 解:对于①,正方体的体积与棱长是确定的关系,为函数关系,不是相关关系;
对于②,在一定范围内,“一块农田的水稻产量与施肥量”是相关关系;
对于③,在一定范围内,“人的身高与年龄”是相关关系;
对于④,森林中的同一种树木,其横断面直径与高度之间的关系是相关关系;
对于⑤,某户家庭用电量与电价间的关系,是函数关系,不是相关关系;
综上,以上变量关系是相关关系的为②③④.
故选:D.

点评 本题考查了判断两个变量是否为线性相关关系的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知符号函数sgn(x)=$\left\{\begin{array}{l}{-1,(x<0)}\\{0,(x=0)}\\{1,(x>0)}\end{array}\right.$.
(1)sgn(2x)=1;
(2)设a=$\frac{1}{lo{g}_{\frac{1}{2}}\frac{1}{3}}$+$\frac{1}{lo{g}_{\frac{1}{5}}\frac{1}{3}}$,b=3,则$\frac{a+b+(a-b)•sgn(a-b)}{2}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sinx(cosx-sinx),则下列说法正确的为(  )
A.函数f(x)的最小正周期为2π
B.f(x)的图象关于直线$x=\frac{π}{8}$
C.对称f(x)的最大值为$\sqrt{2}$
D.将f(x)的图象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$个单位长度后会得到一个奇函数的图象

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{{a}^{x}+b,x≤0}\end{array}\right.$,且f(0)=2,f(-1)=3,则f(f(-3))=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{a{x}^{2}-x+3}$,其中 a∈R.
(1)若函数f(x)的定义域为R,求实数a的范围;
(2)若函数f(x)的值域为[0,+∞),求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.对于任意非零实数x1,x2,函数f(x)满足f(x1•x2)=f(x1)+f(x2),
(1)求f(-1)的值;
(2)求证:f(x)是偶函数;
(3)已知f(x)在(0,+∞)上是增函数,若f(2x-1)<f(x),求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\frac{1}{x}$,则$\lim_{x→a}\frac{f(x)-f(a)}{x-a}$等于-$\frac{1}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+$\frac{f(5)}{f(4)}$+…+$\frac{f(2014)}{f(2013)}$=4026.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a12+a3=4,且a5+a6+a7=18.
(1)求数列{an}的通项公式;
(2)若a1,a2,a4成等比数列,求数列{$\frac{1}{(2n+2){a}_{n}}$}的前n项和Sn

查看答案和解析>>

同步练习册答案