精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)与f'(x)的图象如图所示,则函数g(x)=$\frac{f(x)}{e^x}$的递减区间为(  )
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.$({0,\frac{4}{3}})$D.(0,1),(4,+∞)

分析 结合函数图象求出f′(x)-f(x)<0成立的x的范围即可.

解答 解:结合图象:x∈(0,1)和x∈(4,+∞)时,f′(x)-f(x)<0,
而g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
故g(x)在(0,1),(4,+∞)递减,
故选:D.

点评 本题考查了数形结合思想,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的结果是(  )
A.3B.9C.27D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知cos($\frac{π}{4}$+α)=$\frac{2}{5}$,则sin2α=(  )
A.$\frac{7}{25}$B.-$\frac{17}{25}$C.-$\frac{7}{25}$D.$\frac{17}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.圆M:x2+y2-2y=24,直线l:x+y=11,l上一点A的横坐标为a,过点A作圆M的两条切线l1,l2,切点为B,C.
(Ⅰ)当a=0时,求直线l1,l2的方程;
(Ⅱ)是否存在点A,使得$\overrightarrow{AB}•\overrightarrow{AC}$=-2?若存在,求出点A的坐标,若不存在,请说明理由.
(Ⅲ)求证当点A在直线l运动时,直线BC过定点P0
(附加题)问:第(Ⅲ)问的逆命题是否成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex(x2+ax+a).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:当a≥4时,函数f(x)存在最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex(x2-a),a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数f(x)在(-3,0)上单调递减,试求a的取值范围;
(Ⅲ)若函数f(x)的最小值为-2e,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{k}{x}$有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2>$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某算法的程序框图如图所示,其中输入的变量x在1,&2,&3,&…,&24这24个整数中等可能随机产生.分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.$\frac{{sin{{92}°}-sin{{32}°}cos{{60}°}}}{{cos{{32}°}}}$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案