3£®Ô²M£ºx2+y2-2y=24£¬Ö±Ïßl£ºx+y=11£¬lÉÏÒ»µãAµÄºá×ø±êΪa£¬¹ýµãA×÷Ô²MµÄÁ½ÌõÇÐÏßl1£¬l2£¬ÇеãΪB£¬C£®
£¨¢ñ£©µ±a=0ʱ£¬ÇóÖ±Ïßl1£¬l2µÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚµãA£¬Ê¹µÃ$\overrightarrow{AB}•\overrightarrow{AC}$=-2£¿Èô´æÔÚ£¬Çó³öµãAµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©ÇóÖ¤µ±µãAÔÚÖ±ÏßlÔ˶¯Ê±£¬Ö±ÏßBC¹ý¶¨µãP0£®
£¨¸½¼ÓÌ⣩ÎÊ£ºµÚ£¨¢ó£©ÎʵÄÄæÃüÌâÊÇ·ñ³ÉÁ¢£¿

·ÖÎö £¨1£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉÖ±½ÓÇó³öбÂÊ£»
£¨2£©µ±l1¡Íl2ʱ£¬ËıßÐÎMCABΪÕý·½ÐΣ¬Çó³öaµÄÖµ£»Éè$£¼\overrightarrow{AB}£¬\overrightarrow{AC}£¾$=2¦È£¬Ôò$\overrightarrow{AB}$•$\overrightarrow{AC}$=|AB|2£¨1-2sin2¦È£©£¬¹Ê$\overrightarrow{AB}$•$\overrightarrow{AC}$=£¨AM2-25£©£¨1-$\frac{50}{A{M}^{2}}$£©=AM2+$\frac{25¡Á50}{2A{M}^{2}}$-75£¬ÓÖÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëÊÇ$5\sqrt{2}$¡àAM2¡Ý50£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$¡Ý50+$\frac{25¡Á50}{50}$-75=0£¬¹ÊµãA²»´æÔÚ£®
£¨3£©ÀûÓÃÁ½Ô²·½³ÌÏà¼õ£¬Çó³ö¹«¹²ÏÒÖ±Ïß·½³Ì£¬ÕÒ³ö¶¨µã£®

½â´ð ½â£º£¨1£©Ô²M£ºx2+£¨y-1£©2=25£¬Ô²ÐÄM£¨0£¬1£©£¬°ë¾¶r=5£¬A£¨0£¬11£©£¬
ÉèÇÐÏߵķ½³ÌΪy=k x+11£¬Ô²Ðľàd=$\frac{10}{\sqrt{{k}^{2}+1}}$=5£¬
¡àk=¡À$\sqrt{3}$£¬ËùÇóÖ±Ïßl1£¬l2µÄ·½³ÌΪy=¡À$\sqrt{3}$x+11
£¨2£©µ±l1¡Íl2ʱ£¬ËıßÐÎMCABΪÕý·½ÐΣ¬
¡à|AM|+$\sqrt{2}$|MB|=5$\sqrt{2}$
ÉèA£¨a£¬11-a£©£¬M£¨0£¬1£©Ôò $\sqrt{{a}^{2}+£¨10-a£©^{2}}$=$5\sqrt{2}$
a2-10a+25=0¡àa=5
Éè$£¼\overrightarrow{AB}£¬\overrightarrow{AC}£¾$=2¦È£¬Ôò
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|AB|2£¨1-2sin2¦È£©£¬
ÓÖsin¦È=$\frac{r}{|AM|}$£¬¹Ê$\overrightarrow{AB}$•$\overrightarrow{AC}$=£¨AM2-25£©£¨1-$\frac{50}{A{M}^{2}}$£©=AM2+$\frac{25¡Á50}{2A{M}^{2}}$-75£¬
ÓÖÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëÊÇ$5\sqrt{2}$  
¡àAM2¡Ý50£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$¡Ý50+$\frac{25¡Á50}{50}$-75=0£¬¹ÊµãA²»´æÔÚ£®
£¨3£©ÉèA£¨a£¬b£©£¬Ôòa+b=1   ¢Ù£»
ÒÑAMΪֱ¾¶µÄÔ²ÓëÔ²M½»ÓÚB£¬C£¬AB£¬ACΪÇÐÏߣ»
ÒÔAMΪֱ¾¶µÄÔ²·½³ÌΪ£ºx£¨x-a£©+£¨y-1£©£¨y-b£©=0  ¢Ú
Ô²M£ºx2+y2-2y=24   ¢Û£¬
Á½Ê½¢Ú¢ÛÏà¼õµÃ¹«¹²ÏÒBC·½³Ì£º24+2y-ax-£¨b+1£©y+b=0£¬´úÈë¢Ù»¯¼ò£º
y-$\frac{7}{2}$=-$\frac{a}{10-a}$£¨x-$\frac{5}{2}$£©£¬¹ÊÖªP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©£®
¸½¼ÓÌ⣺
Ê×ÏÈ£ºµÚ£¨III£©µÄÄæÃüÌâÊÇ£º¹ý¶¨µãP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©µÄÖ±Ïß½»Ô²x2+y2-2y=24 ÓÚB£®CÁ½µã£¬·Ö±ðÒÔB£¬CΪÇеã×÷Ô²MµÄÇÐÏßl1£¬l2 ÏཻÓÚAµã£¬ÔòAÔÚx+y=11ÉÏ£®
Ö¤Ã÷£ºÉèA£¨a£¬b£©£¬ÒÑAMΪֱ¾¶µÄÔ²ÓëÔ²M½»ÓÚB£¬C£¬Ò×Ö¤AB£¬ACΪÇÐÏߣ»
ÒÔAMΪֱ¾¶µÄÔ²·½³ÌΪ£ºx£¨x-a£©+£¨y-1£©£¨y-b£©=0 
Ô²M£ºx2+y2-2y=24£¬
Á½Ê½Ïà¼õµÃ¹«¹²ÏÒBC·½³Ì£º24+2y-ax-£¨b+1£©y+b=0£¬
ÓÉÓÚ¹«¹²ÏÒBCËùÔÚÖ±Ïß¹ý¶¨µãP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©£¬´úÈë¿ÉµÃa+b=11£¬µÃÖ¤£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÔ²¹ØÏµ£¬µãµ½Ö±Ïß¾àÀ빫ʽ£¬Ö±Ïß·½³Ì£¬Ô²×ÛºÏÒÔ¼°´æÔÚÐÔÖ¤Ã÷ÎÊÌ⣬ÊôÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¡°[x]¡±±íʾ²»³¬¹ýʵÊýxµÄ×î´óµÄÕûÊý£¬Èç[1.3]=1£¬[2]=2£¬[-2.3]=-3£¬ÓÖ¼Ç{x}=x-[x]£¬ÒÑÖªº¯Êýf£¨x£©=[x]-{x}£¬x¡ÊR£¬¸ø³öÒÔÏÂÃüÌ⣺
¢Ùf£¨x£©µÄÖµÓòΪR£»
¢Úf£¨x£©ÔÚÇø¼ä[k£¬k+1]£¬k¡ÊZÉϵ¥µ÷µÝ¼õ£»
¢Ûf£¨x£©µÄͼÏó¹ØÓڵ㣨1£¬0£©ÖÐÐĶԳƣ»
¢Üº¯Êý|f£¨x£©|Ϊżº¯Êý£®
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ù£¨½«ËùÓÐÕýÈ·ÃüÌâÐòºÅÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôË«ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ2£¬A£¬F·Ö±ðÊÇËüµÄ×ó¶¥µãºÍÓÒ½¹µã£¬µãBµÄ×ø±êΪ£¨0£¬b£©£¬Ôòcos¡ÏABFµÄֵΪ$\frac{{\sqrt{7}}}{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬an£¾0£¬¹«±Èq¡Ù1£¬Ôò£¨¡¡¡¡£©
A£®a32+a72£¾a42+a62B£®a32+a72£¼a42+a62
C£®a32+a72=a42+a62D£®a32+a72Óëa42+a62µÄ´óС²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl1£ºy=kx-1ÓëË«ÇúÏßx2-y2=1µÄ×óÖ§½»ÓÚA¡¢BÁ½µã£®
£¨1£©ÇóбÂÊkµÄȡֵ·¶Î§£»
£¨2£©ÈôÖ±Ïßl2¾­¹ýµãP£¨-2£¬0£©¼°Ïß¶ÎABµÄÖеãQÇÒl2ÔÚyÖáÉϽؾàΪ-16£¬ÇóÖ±Ïßl1µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®È¥ÄêijµØµÄÔÂÆ½¾ùÆøÎÂy£¨¡æ£©ÓëÔ·Ýx£¨Ô£©½üËÆµØÂú×㺯Êýy=a+bsin£¨$\frac{¦Ð}{6}$x+$\frac{¦Ð}{6}$£©£¨a£¬bΪ³£Êý£©£®Èô6Ô·ݵÄÔÂÆ½¾ùÆøÎÂԼΪ22¡æ£¬12Ô·ݵÄÔÂÆ½¾ùÆøÎÂԼΪ4¡æ£¬Ôò¸ÃµØ8Ô·ݵÄÔÂÆ½¾ùÆøÎÂԼΪ31¡æ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©Óëf'£¨x£©µÄͼÏóÈçͼËùʾ£¬Ôòº¯Êýg£¨x£©=$\frac{f£¨x£©}{e^x}$µÄµÝ¼õÇø¼äΪ£¨¡¡¡¡£©
A£®£¨0£¬4£©B£®$£¨{-¡Þ£¬1}£©£¬£¨{\frac{4}{3}£¬4}£©$C£®$£¨{0£¬\frac{4}{3}}£©$D£®£¨0£¬1£©£¬£¨4£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªa¡Ù0£¬ÏÂÁи÷²»µÈʽºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®a+$\frac{1}{a}$£¾2B£®a+$\frac{1}{a}$¡Ý2C£®a+$\frac{1}{a}$¡Ü-2D£®|a+$\frac{1}{a}$|¡Ý2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑ֪˫ÇúÏß$C£º\frac{y^2}{a^2}-\frac{x^2}{b^2}=1£¨a£¾b£¾0£©$µÄÒ»Ìõ½¥½üÏßÓ뺯Êýy=1+lnx+ln2µÄͼÏóÏàÇУ¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®2B£®$\sqrt{5}$C£®$\sqrt{3}$D£®$\frac{\sqrt{5}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸