·ÖÎö £¨1£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉÖ±½ÓÇó³öбÂÊ£»
£¨2£©µ±l1¡Íl2ʱ£¬ËıßÐÎMCABΪÕý·½ÐΣ¬Çó³öaµÄÖµ£»Éè$£¼\overrightarrow{AB}£¬\overrightarrow{AC}£¾$=2¦È£¬Ôò$\overrightarrow{AB}$•$\overrightarrow{AC}$=|AB|2£¨1-2sin2¦È£©£¬¹Ê$\overrightarrow{AB}$•$\overrightarrow{AC}$=£¨AM2-25£©£¨1-$\frac{50}{A{M}^{2}}$£©=AM2+$\frac{25¡Á50}{2A{M}^{2}}$-75£¬ÓÖÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëÊÇ$5\sqrt{2}$¡àAM2¡Ý50£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$¡Ý50+$\frac{25¡Á50}{50}$-75=0£¬¹ÊµãA²»´æÔÚ£®
£¨3£©ÀûÓÃÁ½Ô²·½³ÌÏà¼õ£¬Çó³ö¹«¹²ÏÒÖ±Ïß·½³Ì£¬ÕÒ³ö¶¨µã£®
½â´ð ½â£º£¨1£©Ô²M£ºx2+£¨y-1£©2=25£¬Ô²ÐÄM£¨0£¬1£©£¬°ë¾¶r=5£¬A£¨0£¬11£©£¬
ÉèÇÐÏߵķ½³ÌΪy=k x+11£¬Ô²Ðľàd=$\frac{10}{\sqrt{{k}^{2}+1}}$=5£¬
¡àk=¡À$\sqrt{3}$£¬ËùÇóÖ±Ïßl1£¬l2µÄ·½³ÌΪy=¡À$\sqrt{3}$x+11
£¨2£©µ±l1¡Íl2ʱ£¬ËıßÐÎMCABΪÕý·½ÐΣ¬
¡à|AM|+$\sqrt{2}$|MB|=5$\sqrt{2}$
ÉèA£¨a£¬11-a£©£¬M£¨0£¬1£©Ôò $\sqrt{{a}^{2}+£¨10-a£©^{2}}$=$5\sqrt{2}$
a2-10a+25=0¡àa=5
Éè$£¼\overrightarrow{AB}£¬\overrightarrow{AC}£¾$=2¦È£¬Ôò
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|AB|2£¨1-2sin2¦È£©£¬
ÓÖsin¦È=$\frac{r}{|AM|}$£¬¹Ê$\overrightarrow{AB}$•$\overrightarrow{AC}$=£¨AM2-25£©£¨1-$\frac{50}{A{M}^{2}}$£©=AM2+$\frac{25¡Á50}{2A{M}^{2}}$-75£¬
ÓÖÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀëÊÇ$5\sqrt{2}$
¡àAM2¡Ý50£¬$\overrightarrow{AB}$•$\overrightarrow{AC}$¡Ý50+$\frac{25¡Á50}{50}$-75=0£¬¹ÊµãA²»´æÔÚ£®
£¨3£©ÉèA£¨a£¬b£©£¬Ôòa+b=1 ¢Ù£»
ÒÑAMΪֱ¾¶µÄÔ²ÓëÔ²M½»ÓÚB£¬C£¬AB£¬ACΪÇÐÏߣ»
ÒÔAMΪֱ¾¶µÄÔ²·½³ÌΪ£ºx£¨x-a£©+£¨y-1£©£¨y-b£©=0 ¢Ú
Ô²M£ºx2+y2-2y=24 ¢Û£¬
Á½Ê½¢Ú¢ÛÏà¼õµÃ¹«¹²ÏÒBC·½³Ì£º24+2y-ax-£¨b+1£©y+b=0£¬´úÈë¢Ù»¯¼ò£º
y-$\frac{7}{2}$=-$\frac{a}{10-a}$£¨x-$\frac{5}{2}$£©£¬¹ÊÖªP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©£®
¸½¼ÓÌ⣺
Ê×ÏÈ£ºµÚ£¨III£©µÄÄæÃüÌâÊÇ£º¹ý¶¨µãP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©µÄÖ±Ïß½»Ô²x2+y2-2y=24 ÓÚB£®CÁ½µã£¬·Ö±ðÒÔB£¬CΪÇеã×÷Ô²MµÄÇÐÏßl1£¬l2 ÏཻÓÚAµã£¬ÔòAÔÚx+y=11ÉÏ£®
Ö¤Ã÷£ºÉèA£¨a£¬b£©£¬ÒÑAMΪֱ¾¶µÄÔ²ÓëÔ²M½»ÓÚB£¬C£¬Ò×Ö¤AB£¬ACΪÇÐÏߣ»
ÒÔAMΪֱ¾¶µÄÔ²·½³ÌΪ£ºx£¨x-a£©+£¨y-1£©£¨y-b£©=0
Ô²M£ºx2+y2-2y=24£¬
Á½Ê½Ïà¼õµÃ¹«¹²ÏÒBC·½³Ì£º24+2y-ax-£¨b+1£©y+b=0£¬
ÓÉÓÚ¹«¹²ÏÒBCËùÔÚÖ±Ïß¹ý¶¨µãP0 £¨$\frac{5}{2}$£¬$\frac{7}{2}$£©£¬´úÈë¿ÉµÃa+b=11£¬µÃÖ¤£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÔ²¹ØÏµ£¬µãµ½Ö±Ïß¾àÀ빫ʽ£¬Ö±Ïß·½³Ì£¬Ô²×ÛºÏÒÔ¼°´æÔÚÐÔÖ¤Ã÷ÎÊÌ⣬ÊôÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a32+a72£¾a42+a62 | B£® | a32+a72£¼a42+a62 | ||
| C£® | a32+a72=a42+a62 | D£® | a32+a72Óëa42+a62µÄ´óС²»È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬4£© | B£® | $£¨{-¡Þ£¬1}£©£¬£¨{\frac{4}{3}£¬4}£©$ | C£® | $£¨{0£¬\frac{4}{3}}£©$ | D£® | £¨0£¬1£©£¬£¨4£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a+$\frac{1}{a}$£¾2 | B£® | a+$\frac{1}{a}$¡Ý2 | C£® | a+$\frac{1}{a}$¡Ü-2 | D£® | |a+$\frac{1}{a}$|¡Ý2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | $\sqrt{5}$ | C£® | $\sqrt{3}$ | D£® | $\frac{\sqrt{5}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com