精英家教网 > 高中数学 > 题目详情
6.已知cos($\frac{π}{4}$+α)=$\frac{2}{5}$,则sin2α=(  )
A.$\frac{7}{25}$B.-$\frac{17}{25}$C.-$\frac{7}{25}$D.$\frac{17}{25}$

分析 根据二倍角公式和诱导公式即可求出.

解答 解:∵cos($\frac{π}{4}$+α)=$\frac{2}{5}$,
∴cos2($\frac{π}{4}$+α)=$\frac{4}{25}$,
∴$\frac{1+cos(2α+\frac{π}{2})}{2}$=$\frac{1-sin2α}{2}$=$\frac{4}{25}$,
则sin2α=$\frac{17}{25}$.
故选:D.

点评 本题考查了诱导公式和二倍角公式,属于基础题,熟记公式即可解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2(-x2-2x+8).
(1)求f(x)的定义域和值域; 
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.棱长均为a的三棱锥的表面积是(  )
A.4a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{3\sqrt{3}}}{4}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,A,F分别是它的左顶点和右焦点,点B的坐标为(0,b),则cos∠ABF的值为$\frac{{\sqrt{7}}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义域为R上的奇函数f(x)=a-$\frac{4}{{{3^x}+1}}$.
(1)求a的值;
(2)判断并证明函数f(x)的单调性;
(3)若对于任意的m∈R,不等式f(-3m+3)+f(6m-8)<0恒成立.求m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}中,an>0,公比q≠1,则(  )
A.a32+a72>a42+a62B.a32+a72<a42+a62
C.a32+a72=a42+a62D.a32+a72与a42+a62的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:y=kx-1与双曲线x2-y2=1的左支交于A、B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(-2,0)及线段AB的中点Q且l2在y轴上截距为-16,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)与f'(x)的图象如图所示,则函数g(x)=$\frac{f(x)}{e^x}$的递减区间为(  )
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.$({0,\frac{4}{3}})$D.(0,1),(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某电商新售A产品,售价每件50元,年销售量为11.8万件,为支持新品发售,第一年免征营业税,第二年需征收销售额x%的营业税(即每销售100元征税x元),第二年电商决定将A产品的售价提高$\frac{50•x%}{1-x%}$元,预计年销售量减少x万件,要使第二年A产品上交的营业税不少于10万元,则x的最大值是(  )
A.2B.5C.8D.10

查看答案和解析>>

同步练习册答案