精英家教网 > 高中数学 > 题目详情
10.$\frac{{sin{{92}°}-sin{{32}°}cos{{60}°}}}{{cos{{32}°}}}$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

分析 直接利用两角和与差的正弦函数化简求解即可.

解答 解:$\frac{{sin{{92}°}-sin{{32}°}cos{{60}°}}}{{cos{{32}°}}}$=$\frac{sin(32°+60°)-sin32°cos60°}{cos32°}$=$\frac{cos32°sin60°}{cos32°}$=$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题考查两角和与差的三角函数,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)与f'(x)的图象如图所示,则函数g(x)=$\frac{f(x)}{e^x}$的递减区间为(  )
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.$({0,\frac{4}{3}})$D.(0,1),(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某电商新售A产品,售价每件50元,年销售量为11.8万件,为支持新品发售,第一年免征营业税,第二年需征收销售额x%的营业税(即每销售100元征税x元),第二年电商决定将A产品的售价提高$\frac{50•x%}{1-x%}$元,预计年销售量减少x万件,要使第二年A产品上交的营业税不少于10万元,则x的最大值是(  )
A.2B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$C:\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>b>0)$的一条渐近线与函数y=1+lnx+ln2的图象相切,则双曲线C的离心率是(  )
A.2B.$\sqrt{5}$C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知p:(x+2)(x-6)≤0,q:|x-2|<5,命题“p∨q”为真,“?p”为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合P={0,a},Q={1,2},若P∩Q=∅,则a等于(  )
A.1B.2C.l或2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求值:log3$\sqrt{27}$+7${\;}^{lo{g}_{7}2}$+16${\;}^{\frac{3}{4}}$-20150
(2)设函数f(x)是定义在R上的偶函数,且f(x)=f(x-2),当x∈[0,1]时,f(x)=2x+1,求f($\frac{3}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1≤2x<16},B={x|0≤x<3,x∈N},则A∩B=(  )
A.{x|0≤x<3}B.{x|1≤x<3}C.{0,1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}的首项为$\frac{1}{2}$,公比为$\frac{1}{2}$,其前n项和Tn满足$|{T_n}-1|<\frac{1}{1000}$,则n的最小值为(  )
A.9B.10C.11D.12

查看答案和解析>>

同步练习册答案