精英家教网 > 高中数学 > 题目详情
3.要得到函数y=sin2x的图象,只需将函数y=cos(2x-$\frac{π}{3}$)的图象向右(左、右)平移$\frac{π}{12}$个单位长度.

分析 根据三角函数的诱导公式以及三角函数图象之间的关系即可得到结论.

解答 解:y=cos(2x-$\frac{π}{3}$)=sin(2x-$\frac{π}{3}$+$\frac{π}{2}$)=sin(2x+$\frac{π}{6}$)=sin2(x+$\frac{π}{12}$),
则要得到函数y=sin2x的图象,只需将函数y=sin2(x+$\frac{π}{12}$)的图象向右平移$\frac{π}{12}$个单位即可.
故答案为:右;$\frac{π}{12}$.

点评 本题主要考查三角函数的图象关系,利用诱导公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$对于任意的x1,x2∈R,都满足条件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,则a的取值范围是$1<a≤\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x-1≥0},B={x|x2-x-2≤0},则A∩B=(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“sinα=cosα”是“sin2α=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当a为任意实数时,直线ax-y+1-3a=0恒过定点(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=xlnx,g(x)=x3+ax2+x.
(Ⅰ)讨论函数g(x)的极值点的个数;
(Ⅱ)若不等式2f(x)≤g′(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若定义在R上的单调减函数f(x)满足:f(a-2sinx)≤f(cos2x)对一切实数x∈R恒成立,则实数a的取值范围是${\;}_{\;}^{\;}a≥2{\;}_{\;}^{\;}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-x3-x+sinx,当$θ∈(0,\frac{π}{2})$时,恒有f(cos2θ+2msinθ)+f(-2m-2)>0成立,则实数m的取值范围是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,O为坐标原点,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}$=$\overrightarrow 0$,A(1,1),则$\overrightarrow{AD}•\overrightarrow{OB}$的取值范围为[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

同步练习册答案