分析 由三角形的外心和重心的概念,可得O既是外心也为重心,则有△BCD为圆O:x2+y2=1的内接等边三角形,又$\overrightarrow{AD}$•$\overrightarrow{OB}$=($\overrightarrow{OD}-\overrightarrow{OA}$)•$\overrightarrow{OB}$,由向量的数量积的定义和余弦函数的值域,即可得到所求范围.
解答 解:由|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,可知O为外心,
又$\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}$=$\overrightarrow 0$,可知O又为重心.
则有△BCD为圆O:x2+y2=1的内接等边三角形,
即有$\overrightarrow{AD}•\overrightarrow{OB}$=($\overrightarrow{OD}-\overrightarrow{OA}$)•$\overrightarrow{OB}$=$\overrightarrow{OD}•\overrightarrow{OB}$-$\overrightarrow{OA}•\overrightarrow{OB}$=|$\overrightarrow{OD}$|•|$\overrightarrow{OB}$|cos120°-|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|cos<$\overrightarrow{OA},\overrightarrow{OB}$>
=-$\frac{1}{2}$-$\sqrt{2}$cos<$\overrightarrow{OA},\overrightarrow{OB}$>,由于0≤<$\overrightarrow{OA}$,$\overrightarrow{OB}$>≤π,
则-1≤cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>≤1,
即有$\overrightarrow{AD}$•$\overrightarrow{OB}$∈[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].
故答案为:[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].
点评 本题考查向量的数量积的定义,主要考查余弦函数的值域,运用三角形的外心和重心的定义和向量的三角形法则是解题的关键,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 30 | C. | 40 | D. | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{x^2}$ | B. | 2x | C. | -2x | D. | -$\frac{2}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com