精英家教网 > 高中数学 > 题目详情
5.某几何体的三视图(单位:cm)如图所示,则该几何体的俯视图面积为3cm2,该几何体的体积是3cm3

分析 根据该几何体的三视图,该几何体是三棱锥,底面是正视图中的三角形,底边为2cm,高为3cm,三棱锥的高为2cm,即可求该几何体的体积.

解答 解:由该几何体的三视图,该几何体的俯视图面积为$\frac{1}{2}×2×3$=3cm2
该几何体是三棱锥,底面是正视图中的三角形,底边为2cm,高为3cm,三棱锥的高为2cm,
∴几何体的体积是$\frac{1}{3}×\frac{1}{2}×2×3×2$=3cm3
故答案为:3,3

点评 本题考查利用几何体的三视图求几何体的体积,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若定义在R上的单调减函数f(x)满足:f(a-2sinx)≤f(cos2x)对一切实数x∈R恒成立,则实数a的取值范围是${\;}_{\;}^{\;}a≥2{\;}_{\;}^{\;}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sin(\frac{π}{6}-α)=\frac{1}{4}$,则$sin(\frac{π}{6}+2α)$=(  )
A.$\frac{3}{8}$B.$-\frac{3}{4}$C.$\frac{9}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,O为坐标原点,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}$=$\overrightarrow 0$,A(1,1),则$\overrightarrow{AD}•\overrightarrow{OB}$的取值范围为[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于下列命题:
①函数y=tanx在第一象限是增函数; 
②函数y=cos2($\frac{π}{4}$-x)是偶函数;
③函数y=sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0);
④函数y=sin(x+$\frac{π}{4}$)在闭区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
写出所有正确的命题的题号:③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足x-$\sqrt{x+2}$=$\sqrt{y+2}$-y,则x+y的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.画出函数y=|x|的图象,并根据图象写出函数的单调区间,以及在各单调区间上,函数是增函数还是减函数.(提示:由绝对值的定义将函数化为分段函数,再画图,不必列表)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P(0,-1)是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.
(1)求椭圆C1的方程;
(2)如图1,过椭圆C1的右焦点F作直线l1交该椭圆右支于A,B两点,弦AB的垂直平分线交x轴于P,求$\frac{|PF|}{|AB|}$的值.
(3)如图2,若圆C2:x2+y2=4与y轴正半轴交于点Q,过点Q的直线l2交椭圆C1于M、N两点,求△OMQ与△ONQ面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|($\frac{1}{2}$)x≤2},B=|y|y=$\sqrt{x}$},则A∩(∁RB)=(  )
A.[-1,0)B.[-1,0]C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

同步练习册答案