精英家教网 > 高中数学 > 题目详情
3.直线3x+2=0的倾斜角为(  )
A.90°B.C.180°D.不存在

分析 直线3x+2=0与x轴垂直,可得倾斜角.

解答 解:∵直线3x+2=0与x轴垂直,
∴其倾斜角为90°
故选:A.

点评 本题考查了直线斜率问题,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,O为坐标原点,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}$=$\overrightarrow 0$,A(1,1),则$\overrightarrow{AD}•\overrightarrow{OB}$的取值范围为[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P(0,-1)是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.
(1)求椭圆C1的方程;
(2)如图1,过椭圆C1的右焦点F作直线l1交该椭圆右支于A,B两点,弦AB的垂直平分线交x轴于P,求$\frac{|PF|}{|AB|}$的值.
(3)如图2,若圆C2:x2+y2=4与y轴正半轴交于点Q,过点Q的直线l2交椭圆C1于M、N两点,求△OMQ与△ONQ面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列关于向量的说法中不正确的个数有4个
①向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当$\overrightarrow{AB}$=$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.目前,中国的青少年视力水平下降已引起全社会的关注,为了调查了解某中学高三年级1 500名学生的视力情况,从中抽测了一部分学生的视力,
分  组频  数频  率
3.95~4.2520.04
60.12
4.55~4.8523
4.85~5.15
5.15~5.4510.02
合计1.00
整理数据后,分析数据如下:
(1)填写频率分布表中未完成的部分;
(2)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y满足$\left\{\begin{array}{l}{4x+y-8≥0}\\{x+y-5≤0}\\{y-1≥0}\end{array}\right.$,若目标函数z=ax+y(a>0)取到最大值6,则a的值为(  )
A.2B.$\frac{5}{4}$C.$\frac{5}{4}$或2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|($\frac{1}{2}$)x≤2},B=|y|y=$\sqrt{x}$},则A∩(∁RB)=(  )
A.[-1,0)B.[-1,0]C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设p:log2x<0,q:2x≥0,则p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)满足f(-3)=0,且f'(x)g(x)+f(x)g'(x)>0,则不等式f(x)g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,0)∪(0,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步练习册答案