精英家教网 > 高中数学 > 题目详情

【题目】已知2016-2018年文科数学全国Ⅱ卷中各模块所占分值百分比大致如图所示:

给出下列结论:

①选修1-1所占分值比选修1-2小;

②必修分值总和大于选修分值总和;

③必修1分值大致为15分;

④选修1-1的分值约占全部分值的.

其中正确的是( )

A. ①②B. ①②③C. ②③④D. ②④

【答案】C

【解析】

由对图表信息的分析、成立结合百分比逐一运算即可得解.

解:对于①,选修1-1所占分值比为选修1-2所占分值比为即选修1-1所占分值比选修1-2大;

对于②,必修分值总和为大于选修分值总和必修分值总和大于选修分值总和;

对于③,必修1分值大致为150=15分;

对于④,选修1-1的分值约占全部分值的=.

即正确的是②③④,

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)设点.若直线与曲线相交于不同的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=2ax2+2bx,若存在实数x0∈(0t),使得对任意不为零的实数ab均有fx0)=a+b成立,则t的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国际田联的标准400米跑道,它的最内侧跑道的边线是由两根84.39米的平行直线和两段半径36.80米的半圆组成,每根跑道宽1.22米(道与道间的划线宽度忽略不计).比赛时运动员从下方标有数字处出发.为了比賽公平,外道的运动员的起跑点较内道的会有一定的提前量,使得所有运动员跑过的路程完全一致.假设每位运动员都会沿着自己道次的最内侧跑.

1)试给出400米比赛各道次提前量关于道次之间的函数关系,并完成下表(精确到0.01米)

2800米比赛的规则是从出发处按道次跑完第一个弯道后可以开始并道赛跑,请你设计第8道选手的最优跑步路线并给出他起跑的提前量应该是多少.

道次

2

3

4

5

6

7

8

提前量(米)

7.67

15.33

23.00

30.66

38.33

46.00

53.66

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)判断并证明的单调性;

(Ⅱ)是否存在实数,使函数为奇函数?证明你的结论;

(Ⅲ)在(Ⅱ)的条件下,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,为线段的中点是线段上一动点

(1)时,求证:

(2)的面积最小时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调区间;

(2)当时,恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案