精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

【答案】(1)(2)

【解析】

1)求出抛物线的焦点,设出直线的方程,代入抛物线方程,运用韦达定理和抛物线的定义,可得,进而得到抛物线方程;(2)设,不妨设,直线的方程为,由直线与圆相切的条件:,化简整理,结合韦达定理以及三角形的面积公式,运用基本不等式即可求得最小值.

(1)抛物线的焦点为

则过点且斜率为1的直线方程为

联立抛物线方程

消去得:

,则

由抛物线的定义可得,解得

所以抛物线的方程为

(2)设

不妨设

化简得:

圆心到直线的距离为1,

,不难发现

上式又可化为

同理有

所以可以看做关于的一元二次方程的两个实数根,

由条件:

当且仅当时取等号.

面积的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

项目

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20世纪30年代,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为其中,A是被测量地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际的距离造成的偏差),众所周知,5级地震已经比较明显,计算8级地震的最大振幅是5级地震的最大振幅的______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数具有以下性质:上是减函数,在上是增函数.

1)若上是增函数,求实数的取值范围;

2)若,求的值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图.

(1)依据数据的折线图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01);(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如表关系:

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:

; ②; ③; ④

其中在区间上有一个通道宽度为的函数是__________(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当1时,函数的值域是________

(2)若函数的图像与直线只有一个公共点,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2016-2018年文科数学全国Ⅱ卷中各模块所占分值百分比大致如图所示:

给出下列结论:

①选修1-1所占分值比选修1-2小;

②必修分值总和大于选修分值总和;

③必修1分值大致为15分;

④选修1-1的分值约占全部分值的.

其中正确的是( )

A. ①②B. ①②③C. ②③④D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某市骑行过共享单车的人数约占全市的80%,为确定单车的投放数量以及对同年龄的车型配比,需要对该市市民每月骑行单车的次数进行统计,如表所示是对该市随机抽取100位市民的调查结果,每月骑行次数不超过20次称“不经常骑行”,超过20次称“经常骑行”.

经常骑行

不经常骑行

合计

年龄不低于40岁

15

25

40

年龄低于40岁

35

25

60

合计

50

50

100

(1)是否有95%的把握认为骑行单车次数与年龄有关?

(2)以样本的频率为概率

①现从该市市民中随机抽取1人,求该人为“经常骑行”的概率

②已知该市人口约为600万,忽略把经常骑行人数的骑行次数,统计得经常骑行人群每人每月骑行次数的平均值为45次(每月按30天计算),若每辆单车每天被骑行(15次左右,可达到既缓解交通压力又减少了胡乱放置的目的,则该市配置单车的数量应为多少?

附参考公式及数据

0.10

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案