精英家教网 > 高中数学 > 题目详情

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:

; ②; ③; ④

其中在区间上有一个通道宽度为的函数是__________(写出所有正确的序号).

【答案】

【解析】

对于①,只需考虑反比例函数在上的值域即可;对于②,要分别考虑函数的值域和图象性质;对于③,则需从函数图象入手,寻找符合条件的直线即可.

对于①,当时,,故在有一个宽度为1的通道,两条直线可取;对于②,当时,,故在不存在一个宽度为1的通道;对于③,当时,表示双曲线在第一象限的部分,双曲线的渐近线为,故可取另一直线为,满足在有一个宽度为1的通道;对于④,,当时,,函数单调递增;当时,,函数单调递减,且,故可得函数的值域为,两条直线可取;∴在区间上通道宽度可以为1的函数有①③④,即答案为①③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的定义域为I,区间,记.证明:

1)函数在区间D上单调递增的充要条件是:,都有

2)函数在区间D上单调递减的充要条件是:,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|0}B{x|x23x+20}UR,求

1AB

2AB

3)(UAB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,若过且倾斜角为的直线交两点,满足.

(1)求抛物线的方程;

(2)若上动点,轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处切线与直线垂直.

(1)试比较的大小,并说明理由;

(2)若函数有两个不同的零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=2ax2+2bx,若存在实数x0∈(0t),使得对任意不为零的实数ab均有fx0)=a+b成立,则t的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)a=1时,求f(x)≤3的解集;

(2)x[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案