精英家教网 > 高中数学 > 题目详情

【题目】“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

项目

男性

女性

总计

反感

10

不反感

8

总计

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.

(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?

(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

【答案】(1)没有充足的理由认为反感“中国式过马路”与性别有关; (2) .

【解析】

根据从这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率,做出“中国式过马路”的人数,进而得出男生的人数,填好表格,再根据所给的公式求出的值,然后与临界值作比较,即可得出结论

X的可能取值为0,1,2,通过列举法得到事件数,分别计算出它们的概率,列出分布列,求出期望。

(1)列联表补充如下:

性别

男性

女性

总计

反感

10

6

16

不反感

6

8

14

总计

16

14

30

由已知数据得K2的观测值K2

所以,没有充足的理由认为反感“中国式过马路”与性别有关.

(2)X的可能取值为0,1,2.

P(X=0)=,P(X=1)=

P(X=2)=

所以X的分布列为

X

0

1

2

P

X的数学期望为E(X)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)证明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,若AB边上的高为 ,且a2+b2=2 ab,则C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+ (1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.

(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是直角三角形,AB=AC=1,点P是棱BB1上一点,满足 (0≤λ≤1).

(1)若λ= ,求直线PC与平面A1BC所成角的正弦值;
(2)若二面角P﹣A1C﹣B的正弦值为 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中, S2=16,且成等比数列.

(1)求数列{an}的通项公式;

(2)求数列{|an|}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的一个焦点与抛物线C1:y2=-16x的焦点重合,且其离心率为2.

(1)求双曲线C的方程;

(2)求双曲线C的渐近线与抛物线C1的准线所围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,,E是棱CC1中点,FAB的中点.

(1)求证:CF//平面AEB1

(2)求点B到平面AEB1的距离.

查看答案和解析>>

同步练习册答案