【题目】某市场调查发现,某种产品在投放市场的30天中,其销售价格
(元)和时间
(天)(
)的关系如图所示
![]()
(1)写出销售价格
(元)和时间
(天)的函数解析式;
(2)若日销售量
(件)与时间
(天)的函数关系是
(
,
),求该商品的日销售金额
(元)与时间
(天)的函数解析式;
(3)问该产品投放市场第几天时,日销售金额最高?最高值为多少元?
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过C的左焦点F.
(1)求C与M的方程;
(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,过坐标原点
作两条互相垂直的射线与椭圆
分别交于
,
两点.
(1)证明:当
取得最小值时,椭圆
的离心率为
.
(2)若椭圆
的焦距为2,是否存在定圆与直线
总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知扇形
是一个观光区的平面示意图,其中扇形半径为10米,
,为了便于游客观光和旅游,提出以下两种设计方案:
![]()
(1)如图1,拟在观光区内规划一条三角形
形状的道路,道路的一个顶点
在弧
上,另一顶点
在半径
上,且
,求
周长的最大值;
(2)如图2,拟在观光区内规划一个三角形区域种植花卉,三角形花圃
的一个顶点
在弧
上,另两个顶点![]()
在半径![]()
上,且
,
,求花圃
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,过焦点且与
轴垂直的直线被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)已知点
,
,过点
的任意一条直线
与椭圆
交于
,
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某产品的年固定成本为250万元,每生产
千件,需另投入成本
(万元),若年产量不足
千件,
的图像是如图的抛物线,此时
的解集为
,且
的最小值是
,若年产量不小于
千件,
,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱
中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点;
(1)若
∥平面
,求
;
(2)平面
将三棱柱
分成两个部分,求含有点
的那部分体积;
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近来天气变化无常,陡然升温、降温幅度大于
的天气现象出现增多.陡然降温幅度大于
容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的
名幼儿进行调查,得到了如下的列联表,若在全部
名幼儿中随机抽取
人,抽到患伤风感冒疾病的幼儿的概率为
,
(1)请将下面的列联表补充完整;
患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 | |
男 | 25 | ||
女 | 20 | ||
合计 | 100 |
(2)能否在犯错误的概率不超过
的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的
名女性幼儿中,有
名又患黄痘病.现在从患伤风感冒疾病的
名女性中,选出
名进行其他方面的排查,记选出患黄痘病的女性人数为
,求
的分布列以及数学期望.下面的临界值表供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
参考公式:
,其中![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com