精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

【答案】1)证明见解析;(2)存在,

【解析】

1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.

2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.

1)证明:∵椭圆经过点,∴

当且仅当,即时,等号成立,

此时椭圆的离心率.

2)解:∵椭圆的焦距为2,∴,又,∴.

当直线的斜率不存在时,由对称性,设.

在椭圆上,∴,∴,∴到直线的距离.

当直线的斜率存在时,设的方程为.

,得

.

,则.

,∴

,即

到直线的距离.

综上,到直线的距离为定值,且定值为,故存在定圆,使得圆与直线总相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】x[01]时,下列关于函数y=的图象与的图象交点个数说法正确的是(  )

A. 时,有两个交点B. 时,没有交点

C. 时,有且只有一个交点D. 时,有两个交点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为( )

A.84B.56C.35D.28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)求过点且与抛物线的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面.

1)在棱上是否存在一点,使得平面?请证明你的结论;

2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )

A. 甲型号手机在外观方面比较好.B. 甲、乙两型号的系统评分相同.

C. 甲型号手机在性能方面比较好.D. 乙型号手机在拍照方面比较好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,等边三角形所在的平面垂直于底面 是棱的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断直线与平面的是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:

满意度评分分组

合计

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根据评分,将家长的满意度从低到高分为三个等级:

满意度评分

评分70

70评分90

评分90

满意度等级

不满意

满意

非常满意

假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为__________.

查看答案和解析>>

同步练习册答案