【题目】如图所示,四棱锥中,平面,,,.
(1)在棱上是否存在一点,使得平面?请证明你的结论;
(2)求平面和平面所成锐二面角的余弦值.
【答案】(1)存在;证明见解析(2)
【解析】
(1)当点为棱的中点时,平面;取的中点,连结、、,由已知结合中位线的性质可得且,进而可得,由线面平行的判定即可得证;
(2)由题意建立空间直角坐标系,求出各点坐标,再求出平面的一个法向量为与平面的一个法向量为,利用即可得解.
(1)当点为棱的中点时,平面.
证明如下:
取的中点,连结、、,则且,
,,
且,
四边形为平行四边形,
,
平面,平面,
平面.
(2)在平面内过点作直线的垂线,
平面,,,
直线、和两两垂直,
以点为原点,分别以直线、和为轴、轴和轴建立如图所示的空间直角坐标系,过点作交直线于,
,,,
,,
从而可得,,,,,
则,,,.
设平面的一个法向量为,
则即,取,可得,
设平面的一个法向量为,
则即,取,可得
,
平面和平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】设函数,为f(x)的导函数.
(1)若a=b=c,f(4)=8,求a的值;
(2)若a≠b,b=c,且f(x)和的零点均在集合中,求f(x)的极小值;
(3)若,且f(x)的极大值为M,求证:M≤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的各项均为正整数,Sn为其前n项和,对于n=1,2,3,…,有,其中为使为奇数的正整数,当时,的最小值为__________;当时,___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小正三角形组成的一个大正三角形,设,若在大正三角形中随机取一点,则此点取自小正三角形的概率为( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.
(1)证明:当取得最小值时,椭圆的离心率为.
(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆左、右顶点分别为A、B,上顶点为D(0,1),离心率为.
(1)求椭圆C的标准方程;
(2)若点E是椭圆C上位于x轴上方的动点,直线AE、BE与直线分别交于M、N两点,当线段MN的长度最小时,椭圆C上是否存在点T使的面积为?若存在,求出点T的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;
平均车速超过的人数 | 平均车速不超过的人数 | 合计 | |
男性驾驶员 | |||
女性驾驶员 | |||
合计 |
(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.
参考公式:
临界值表:
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点N在曲线上,直线与轴交于点,动点满足,记点的轨迹为
(1)求的轨迹方程;
(2)若过点的直线与交于两点,点在直线上 (为坐标原点),求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.
(1)求椭圆的标准方程;
(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.
(ⅰ)求面积最大值;
(ⅱ)证明:直线与斜率之积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com