精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.

1)求椭圆的标准方程;

2)若椭圆上点与点关于原点对称,过点垂直于轴,垂足为,连接并延长交于另一点,交轴于点.

(ⅰ)求面积最大值;

(ⅱ)证明:直线斜率之积为定值.

【答案】1;(2)(ⅰ);(ⅱ)证明见解析.

【解析】

1)由解方程组即可得到答案;

2)()设,则,易得,注意到,利用基本不等式得到的最大值即可得到答案;()设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.

1)设,由,得.

代入,得,即

,解得

所以椭圆的标准方程为.

2)设,则

(ⅰ)易知的中位线,所以

所以

满足,所以

,得

,当且仅当,即时取等号,

所以面积最大值为.

(ⅱ)记直线斜率为,则直线斜率为

所以直线方程为.

,得

由韦达定理得,所以

代入直线方程,得

于是,直线斜率

所以直线斜率之积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面.

1)在棱上是否存在一点,使得平面?请证明你的结论;

2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC120°ABAEED2EFEFAB,点GCD中点,平面EAD⊥平面ABCD.

1)证明:BDEG

2)若三棱锥,求菱形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为的面积为1,且椭圆的离心率为.

1)求椭圆的标准方程;

2)点在椭圆上且位于第二象限,过点作直线,过点作直线,若直线的交点恰好也在椭圆上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:

满意度评分分组

合计

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根据评分,将家长的满意度从低到高分为三个等级:

满意度评分

评分70

70评分90

评分90

满意度等级

不满意

满意

非常满意

假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且.

求证:(1)直线DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分13分)

某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.

)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式;

)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在上的频率;

(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=x2+blnx+1),其中b0

1)若b=﹣12,求fx)在[13]的最小值;

2)如果fx)在定义域内既有极大值又有极小值,求实数b的取值范围.

查看答案和解析>>

同步练习册答案