精英家教网 > 高中数学 > 题目详情

【题目】已知点N在曲线上,直线轴交于点,动点满足,记点的轨迹为

1)求的轨迹方程;

2)若过点的直线交于两点,点在直线 (为坐标原点),求证:

【答案】1;(2)详见解析.

【解析】

1)设出点的坐标,利用构造出坐标的表达式,再利用点是曲线上的一点,代入即可求解;

2)结合抛物线的定义及图象,将问题转化为证明垂直准线

1)依题意,可得,设

,可得,解得

因为点,代入整理得

即曲线的轨迹方程.

2)设直线的方程是

联立方程组,整理得

因为直线 的方程为,将的坐标代人可得

根据抛物线的定义,可得等于点 到准线的距离,

由于 在准线上,

所以要证明只需证明 垂直准线,即证 轴,

因为的横坐标为

所以轴成立,所以成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为2的正方体中,的中点是P,过点作与截面平行的截面,则截面的面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面.

1)在棱上是否存在一点,使得平面?请证明你的结论;

2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线与两坐标轴的交点都在圆上,圆轴正半轴、轴正半轴分别交于两点.

(Ⅰ)求圆的方程;

(Ⅱ)过点作直线与圆交于两点,是否存在使得共线,如果存在求直线的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,等边三角形所在的平面垂直于底面 是棱的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断直线与平面的是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边 ,那么下面说法正确的是( )

A. 平面平面

B. 四面体的体积是

C. 二面角的正切值是

D. 与平面所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC120°ABAEED2EFEFAB,点GCD中点,平面EAD⊥平面ABCD.

1)证明:BDEG

2)若三棱锥,求菱形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为的面积为1,且椭圆的离心率为.

1)求椭圆的标准方程;

2)点在椭圆上且位于第二象限,过点作直线,过点作直线,若直线的交点恰好也在椭圆上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考——如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.

(Ⅰ)求得分在上的频率;

(Ⅱ)求社区居民问卷调查的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)以频率估计概率,若在全部参与学习的居民中随机抽取5人参加问卷调查,记得分在间的人数为,求的分布列.

查看答案和解析>>

同步练习册答案