精英家教网 > 高中数学 > 题目详情
8.以圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0相交的公共弦为直径的圆的方程为(  )
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+$\frac{3}{5}$)2+(y+$\frac{6}{5}$)2=$\frac{4}{5}$D.(x-$\frac{3}{5}$)2+(y-$\frac{6}{5}$)2=$\frac{4}{5}$

分析 两圆方程相减求出公共弦所在直线的解析式,确定公共弦为直径的圆的圆心坐标,即可得出结论.

解答 解:圆C1:x2+y2+4x+1=0与圆C2:x2+y2+2x+2y+1=0,方程相减得圆C1与圆C2的公共弦所在直线的方程:x-y=0.
与圆C1:x2+y2+4x+1=0联立,可得圆2x2+4x+1=0,∴x1+x1=-2,∴公共弦为直径的圆的圆心坐标为(-1,-1),
故选:B,

点评 此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(  )
A.(1,5)B.(1,1)C.(3,1)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆O:x2+y2+6x-2y+6=0,若斜率存在且不等于0的直线l过点A(4,0)且被圆O截得的弦长为2$\sqrt{3}$,则直线l的方程为(  )
A.24x+7y-28=0B.7x+24y-28=0C.24x-7y-28=0D.7x-24y-28=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}是递增的等比数列,若a2=3,a4-a3=18,则a5的值为81;{an}的前5项的和S5的值为121.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,则λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<4的解集;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{2}{m}+\frac{1}{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积为64+32$\sqrt{2}$cm2,体积为$\frac{160}{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等比数列{an}中,已知a1+a2=10,a9+a10=90,则 a5+a6=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),则实数a的取值范围是(  )
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})∪(1,+∞)$

查看答案和解析>>

同步练习册答案