精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB
内一点,
HC1
=(2m,-2m,-m)(m<0).
(1)证明HC1⊥平面EDB;
(2)求BC1与平面EDB所成的角;
(3)若正方体的棱长为a,求三棱锥A-EDB的体积.
精英家教网
证明:(1)设正方体的棱长为a,则
DE
={ 
a
2
 , 0 , a }
DB
={ a , a , 0 }

HC1
DE
=0 , 
HC1
DB
=0

HC1
DE
 , 
HC1
DB

又∵DE∩DB=D
∴HC1⊥平面EDB.
(2)
BC1
={ -a ,0 , a }
,设
BC1
HC1
所成的角为θ
cosθ=
BC1
HC1
BC1
| • | 
HC1
|
=
2ma+ma
2
a • 3m
=
2
2

∴θ=45°.
由(1)知HC1⊥平面EDB
∴∠C1BH为BC1与平面EDB所成的角
∴∠C1BH=90°-45°=45°
(3)VA-EDB=VE-ABD=
1
3
1
2
a2•a=
1
6
a3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案