精英家教网 > 高中数学 > 题目详情
13.设集合A={x|-1<x≤2},Z为整数集,则集合A∩Z中元素的个数是(  )
A.3B.4C.5D.6

分析 求出A与Z的交集,即可作出判断.

解答 解:∵A={x|-1<x≤2},Z为整数集,
∴A∩Z={0,1,2},
则集合A∩Z中元素的个数是3,
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=eax+λlnx,其中a<0,e是自然对数的底数
(Ⅰ)若f(x)是(0,+∞)上的单调函数,求λ的取值范围;
(Ⅱ)若0<λ<$\frac{1}{e}$,证明:函数f(x)有两个极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=(\;t,\;1)$和$\overrightarrow b=(-2,\;t+2)$,若$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=(  )
A.64B.8C.5D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一球内切于底面半径为$\sqrt{3}$,高为3的圆锥,则内切球半径是1;内切球与该圆锥的体积之比为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x1>0,x2>0,x1+x2<ex1x2(e为自然对数的底数),则(  )
A.x1+x2>1B.x1+x2<1C.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$<$\frac{1}{e}$D.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足$z=\frac{2+i}{i}$(其中i为虚数单位),则$\overline z$=(  )
A.-1+2iB.-1-2iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.
(1)求这100份数学试卷的样本平均分$\overline x$和样本方差s2
(同一组中的数据用该组区间的中点值作代表)
(2)从总分在[55,65)和[135,145)的试卷中随机抽取2分试卷,求抽取的2分试卷中至少有一份总分少于65分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{i({-6+i})}}{{|{3-4i}|}}$的实部与虚部之差为(  )
A.-1B.1C.$-\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\frac{{-{3^x}+a}}{{{3^{x+1}}+b}}$.
(1)当a=b=1时,求满足f(x)=3x的x的取值;
(2)若函数f(x)是定义在R上的奇函数存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范围.

查看答案和解析>>

同步练习册答案