精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=﹣ex+ex(e为自然对数的底数)
(1)求函数f(x)的最大值;
(2)设g(x)=lnx+ x2+ax,若对任意x1∈(0,2],总存在x2∈(0,2].使得g(x1)<f(x2),求实数a的取值范围.

【答案】
(1)解:f(x)=﹣ex+ex的导数为f′(x)=﹣ex+e,

当x∈(﹣∞,1)时,f′(x)>0,f(x)单调递增;

当x∈(1,+∞)时,f′(x)<0,f(x)单调递减;

故f(x)max=f(1)=0;


(2)解:对任意x1∈(0,2],总存在x2∈(0,2],

使得g(x1)<f(x2)等价于g(x1)<f(x2max

由(1)可知f(x2max=f(1)=0.

问题转化为g(x)<0在x∈(0,2]恒成立.

参变量分离得:﹣a> = + x,

令r(x)= + x,x∈(0,2],

r′(x)= + ,由0<x≤2时,1﹣lnx>0,得r′(x)>0,

即r(x)在x1∈(0,2]上单增.

故﹣a>r(x)max=r(2)= +1.

综上:a<﹣ ﹣1,

即a的取值范围为 (﹣∞,﹣ ﹣1).


【解析】(1)求得f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,进而得到函数f(x)的最大值;(2)由题意可得g(x1)<f(x2max . 由(Ⅰ)可得问题转化为g(x)<0在x∈(0,2]恒成立.运用参数分离,求得不等式右边函数的最大值,即可得到所求a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义为R的偶函数,且对任意的,都有且当时, ,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列{an}的一个m阶子数列.
已知数列{an}的通项公式为an= (n∈N* , a为常数),等差数列a2 , a3 , a6是数列{an}的一个3子阶数列.
(1)求a的值;
(2)等差数列b1 , b2 , …,bm是{an}的一个m(m≥3,m∈N*)阶子数列,且b1= (k为常数,k∈N* , k≥2),求证:m≤k+1
(3)等比数列c1 , c2 , …,cm是{an}的一个m(m≥3,m∈N*)阶子数列,求证:c1+c1+…+cm≤2﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn= (n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anlog3an , 求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:

表一:男生

表二:女生

(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;

(2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

参考公式: ,其中.

参考数据:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

3

4

5

(1)求年推销金额关于工作年限的线性回归方程;

(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.

附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

3

4

5

(1)求年推销金额关于工作年限的线性回归方程;

(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.

附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4

(Ⅰ)求函数的单调递减区间;

(Ⅱ)计算的值;

(Ⅲ)设函数,试讨论函数在区间 [03] 上的零点个数.

查看答案和解析>>

同步练习册答案